Exercise Zone : Bentuk Akar
Table of Contents

Tipe:
No.
Pecahan\dfrac{\sqrt{60}+\sqrt6}2 \dfrac{\sqrt{10}+\sqrt6}2 \dfrac{\sqrt{15}+\sqrt3}2
\dfrac{\sqrt{15}-\sqrt3}2 \dfrac{\sqrt{15}+\sqrt6}2
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5}&=\dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5}\cdot\dfrac{\sqrt2+\sqrt3+\sqrt5}{\sqrt2+\sqrt3+\sqrt5}\\[3.5pt]
&=\dfrac{\sqrt{10}+\sqrt{15}+5+\sqrt6+3+\sqrt{15}-2-\sqrt6-\sqrt{10}}{\left(\sqrt2+\sqrt3\right)^2-5}\\[3.5pt]
&=\dfrac{2\sqrt{15}+6}{2+2\sqrt6+3-5}\\[3.5pt]
&=\dfrac{2\sqrt{15}+6}{2\sqrt6}\\[3.5pt]
&=\dfrac{\sqrt{15}+3}{\sqrt6}\cdot\dfrac{\sqrt6}{\sqrt6}\\[3.5pt]
&=\dfrac{\sqrt{90}+3\sqrt6}6\\[3.5pt]
&=\dfrac{3\sqrt{10}+3\sqrt6}6\\
&=\boxed{\boxed{\dfrac{\sqrt{10}+\sqrt6}2}}
\end{aligned}
Jadi, \dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5} setara dengan \dfrac{\sqrt{10}+\sqrt6}2 .
JAWAB: B
JAWAB: B
No.
Bentuk sederhana dariALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{2\sqrt3+4\sqrt{27}-4\sqrt3}{\sqrt2}&=\dfrac{2\sqrt3+4\cdot3\sqrt3-4\sqrt3}{\sqrt2}\\[4pt]
&=\dfrac{2\sqrt3+12\sqrt3-4\sqrt3}{\sqrt2}\\[4pt]
&=\dfrac{10\sqrt3}{\sqrt2}\cdot\dfrac{\sqrt2}{\sqrt2}\\[4pt]
&=\dfrac{10\sqrt6}2\\[4pt]
&=\boxed{\boxed{5\sqrt6}}
\end{aligned}
Jadi, \dfrac{2\sqrt3+4\sqrt{27}-4\sqrt3}{\sqrt2}=5\sqrt6 .
No.
Bentuk sederhana dari-3\sqrt2 -2\sqrt2 \sqrt2
2\sqrt2 3\sqrt2
ALTERNATIF PENYELESAIAN
\begin{aligned}
-4\sqrt{200}+2\sqrt{242}+5\sqrt{50}-10\sqrt2&=-4\cdot10\sqrt2+2\cdot11\sqrt2+5\cdot5\sqrt2-10\sqrt2\\
&=-40\sqrt2+22\sqrt2+25\sqrt2-10\sqrt2\\
&=-3\sqrt2
\end{aligned}
Jadi, -4\sqrt{200}+2\sqrt{242}+5\sqrt{50}-10\sqrt2=-3\sqrt2 .
JAWAB: A
JAWAB: A
No.
Jika- 5
- 4
- 3
- 2
- 1
ALTERNATIF PENYELESAIAN
\begin{aligned}
r&=\dfrac{20\sqrt2-25}{\left(10+20\sqrt2\right)\left(2-\sqrt2\right)}\\
&=\dfrac{5\left(4\sqrt2-5\right)}{10\left(1+2\sqrt2\right)\left(2-\sqrt2\right)}\\
&=\dfrac{4\sqrt2-5}{2\left(1+2\sqrt2\right)\left(2-\sqrt2\right)}\\
&=\dfrac{4\sqrt2-5}{2\left(2-\sqrt2+4\sqrt2-4\right)}\\
&=\dfrac{24+8\sqrt2-15\sqrt2-10}{2(18-4)}\\
&=\dfrac{14-7\sqrt2}{2(14)}\\
&=\dfrac{2-\sqrt2}{2(2)}\\
&=\dfrac{2-\sqrt2}4
\end{aligned}
\begin{aligned}
(4r-2)^2&=\left(4\left(\dfrac{2-\sqrt2}4\right)-2\right)^2\\
&=\left(2-\sqrt2-2\right)^2\\
&=\left(-\sqrt2\right)^2\\
&=2
\end{aligned}
Jadi, (4r − 2)2 = 2.
JAWAB: D
JAWAB: D
No.
Jika3p\sqrt{10} p\sqrt{10} p^2\sqrt{10}
- 30p
- 0,3p
ALTERNATIF PENYELESAIAN
\begin{aligned}
\sqrt{237}&=\sqrt{2,37\cdot100}\\
&=\sqrt{2,37}\cdot10\\
&=3p\cdot10\\
&=\boxed{\boxed{30p}}
\end{aligned}
Jadi, \sqrt{237}=30p .
JAWAB: D
JAWAB: D
No.
Jika- 2
- 3
- 4
- 5
- 6
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{5-5\sqrt2}{\sqrt5-\sqrt{10}}&=\dfrac{5\left(1-\sqrt2\right)}{\sqrt5\left(1-\sqrt2\right)}\\[3.5pt]
&=\dfrac5{\sqrt5}\cdot\dfrac{\sqrt5}{\sqrt5}\\[3.5pt]
&=\dfrac{5\sqrt5}5\\[3.5pt]
b&=\sqrt5
\end{aligned}
\begin{aligned}
^b\negmedspace\log125&={^{\sqrt5}\negmedspace\log}125\\
&={^{5^{\frac12}}\negmedspace\log}5^3\\
&=2\cdot3\\
&=\boxed{\boxed{6}}
\end{aligned}
Jadi, blog 125 = 6.
JAWAB: E
JAWAB: E
No.
4\sqrt2 {3+\sqrt2}
\sqrt2
- 1
- 0
ALTERNATIF PENYELESAIAN
\begin{aligned}
\sqrt{3+2\sqrt2}-\sqrt2&=\sqrt{2+1+2\sqrt{2\cdot1}}-\sqrt2\\
&=\cancel{\sqrt2}+\sqrt1-\cancel{\sqrt2}\\
&=\boxed{\boxed{1}}
\end{aligned}
Jadi, \sqrt{3+2\sqrt2}-\sqrt2=1 .
JAWAB: D
JAWAB: D
No.
Bentuk sederhana dari\dfrac23\left(\sqrt5+2\sqrt2\right) \dfrac23\left(2\sqrt2-\sqrt5\right) -\dfrac23\left(2\sqrt5+4\sqrt2\right)
-\dfrac49\left(2\sqrt5+4\sqrt2\right) -\dfrac49\left(2\sqrt5-\sqrt2\right)
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{\left(\sqrt3+\sqrt7\right)\left(\sqrt3-\sqrt7\right)}{2\sqrt5-4\sqrt2}&=\dfrac{3-7}{2\sqrt5-4\sqrt2}{\color{red}{\times\dfrac{2\sqrt5+4\sqrt2}{2\sqrt5+4\sqrt2}}}\\[4pt]
&=\dfrac{-4\left(2\sqrt5+4\sqrt2\right)}{20-32}\\[4pt]
&=\dfrac{-4\left(2\sqrt5+4\sqrt2\right)}{-12}\\[4pt]
&=\dfrac{2\sqrt5+4\sqrt2}3\\[4pt]
&=\dfrac{2\left(\sqrt5+2\sqrt2\right)}3\\
&=\boxed{\boxed{\dfrac23\left(\sqrt5+2\sqrt2\right)}}
\end{aligned}
Jadi, \dfrac{\left(\sqrt3+\sqrt7\right)\left(\sqrt3-\sqrt7\right)}{2\sqrt5-4\sqrt2}=\dfrac23\left(\sqrt5+2\sqrt2\right) .
JAWAB: A
JAWAB: A
No.
Tentukan nilai dariALTERNATIF PENYELESAIAN
\begin{aligned}
\left(\sqrt7+\sqrt5\right)\left(\sqrt7-\sqrt5\right)&=7-5\\
&=\boxed{\boxed{2}}
\end{aligned}
Jadi, \left(\sqrt7+\sqrt5\right)\left(\sqrt7-\sqrt5\right)=2 .
No.
Hasil dari-
-3\sqrt{15} -
\sqrt3
-
3\sqrt3 -
3\sqrt{15}
ALTERNATIF PENYELESAIAN
\begin{aligned}
\sqrt{108}+\sqrt{15}\times\sqrt5-2\sqrt{48}&=\sqrt{36\cdot3}+\sqrt{3\cdot5}\times\sqrt5-2\sqrt{16\cdot3}\\
&=6\sqrt3+\sqrt3\times\sqrt5\times\sqrt5-2\times4\sqrt3\\
&=6\sqrt3+5\sqrt3-8\sqrt3\\
&=\boxed{\boxed{3\sqrt3}}
\end{aligned}
Jadi, \sqrt{108}+\sqrt{15}\times\sqrt5-2\sqrt{48}=3\sqrt3 .
JAWAB: C
JAWAB: C
Post a Comment