HOTS Zone : Barisan dan Deret
Berikut ini adalah kumpulan soal mengenai Barisan dan Deret. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.
S = 1 + 2⋅2 + 3⋅22 + 4⋅23 + ⋯ + 2022⋅22021.
\left(\dfrac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{\frac46} adalah
\dfrac{3^2+1}{3^2-1}+\dfrac{5^2+1}{5^2-1}+\dfrac{7^2+1}{7^2-1}+\dots+\dfrac{99^2+1}{99^2-1}
\dfrac{2+3^2}{1!+2!+3!+4!}+\dfrac{3+4^2}{2!+3!+4!+5!}+\cdots+\dfrac{2020+2021^2}{2019!+2020!+2021!+2022!} adalah....
\left(\frac12\right)+2\left(\frac12\right)^2+3\left(\frac12\right)^3+4\left(\frac12\right)^4+5\left(\frac12\right)^5+\cdots Ternyata soal tersebut menggunakan konsep deret dalam pengerjaannya. Langkah yang dilakukan
oleh Fara yaitu dengan memisalkan bahwa deret yang di atas sama dengan x. Maka berapakah nilai
dari x?
\dfrac3{1!+2!+3!}+\dfrac4{2!+3!+4!}+\cdots+\dfrac{2021}{2019!+2020!+2021!}= ....
\displaystyle\sum_{k=1}^8\left(k\times a_k\right)^2=204 . Hasil dari \displaystyle\sum_{k=1}^8a_k
Tipe:
No.
Tentukan nilai dariS = 1 + 2⋅2 + 3⋅22 + 4⋅23 + ⋯ + 2022⋅22021.
- 22022
- 2021⋅22022 − 1
- 2021⋅22022
- 2021⋅22022 + 1
- 22022 − 1
ALTERNATIF PENYELESAIAN
\begin{aligned}
S&=1+2\cdot2+3\cdot2^2+4\cdot2^3+\cdots+2022\cdot2^{2021}\\
2S&=1\cdot2+2\cdot2^2+3\cdot2^3+\cdots+2021\cdot2^{2021}+2022\cdot2^{2022}\qquad\color{red}-\\\hline
-S&=1+2+2^2+2^3+\cdots+2^{2021}-2022\cdot2^{2022}\\
&=\dfrac{1\left(2^{2022}-1\right)}{2-1}-2022\cdot2^{2022}\\
&=2^{2022}-1-2022\cdot2^{2022}\\
&=-2021\cdot2^{2022}-1\\
S&=\boxed{\boxed{2021\cdot2^{2022}+1}}
\end{aligned}
Jadi, S = 1 + 2⋅2 + 3⋅22 + 4⋅23 + ⋯ + 2022⋅22021 = 2021⋅22022 + 1.
JAWAB: D
JAWAB: D
No.
Nilai dari-
\dfrac46 -
\dfrac49
-
\dfrac4{11} -
\dfrac4{13}
ALTERNATIF PENYELESAIAN
k⋅2k⋅4k = 8k3
k⋅3k⋅9k = 27k3 \begin{aligned} \left(\dfrac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{\frac46}&=\left(\dfrac{8\cdot1^3+8\cdot2^3+\cdots+8n^3}{27\cdot1^3+27\cdot2^3+\cdots+27n^3}\right)^{\frac23}\\[4pt] &=\left(\dfrac{8\left(1^3+2^3+\cdots+n^3\right)}{27\left(1^3+2^3+\cdots+n^3\right)}\right)^{\frac23}\\[3.5pt] &=\left(\dfrac8{27}\right)^{\frac23}\\[3.5pt] &=\left(\dfrac{2^3}{3^3}\right)^{\frac23}\\[3.5pt] &=\dfrac{2^2}{3^2}\\ &=\boxed{\boxed{\dfrac49}} \end{aligned}
k⋅3k⋅9k = 27k3 \begin{aligned} \left(\dfrac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{\frac46}&=\left(\dfrac{8\cdot1^3+8\cdot2^3+\cdots+8n^3}{27\cdot1^3+27\cdot2^3+\cdots+27n^3}\right)^{\frac23}\\[4pt] &=\left(\dfrac{8\left(1^3+2^3+\cdots+n^3\right)}{27\left(1^3+2^3+\cdots+n^3\right)}\right)^{\frac23}\\[3.5pt] &=\left(\dfrac8{27}\right)^{\frac23}\\[3.5pt] &=\left(\dfrac{2^3}{3^3}\right)^{\frac23}\\[3.5pt] &=\dfrac{2^2}{3^2}\\ &=\boxed{\boxed{\dfrac49}} \end{aligned}
Jadi, \left(\dfrac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{\frac46}=\dfrac49 .
JAWAB: B
JAWAB: B
No.
Carilah nilaiALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{(2k+1)^2+1}{(2k+1)^2-1}&=\dfrac{4k^2+4k+1+1}{4k^2+4k+1-1}\\[3.5pt]
&=\dfrac{4k^2+4k+2}{4k^2+4k}\\[3.5pt]
&=\dfrac{2k^2+2k+1}{2k^2+2k}\\[3.5pt]
&=1+\dfrac1{2k^2+2k}\\[3.5pt]
&=1+\dfrac1{2k(k+1)}\\[3.5pt]
&=1+\dfrac12\left(\dfrac1k-\dfrac1{k+1}\right)
\end{aligned}
99 = 2(49) + 1
\begin{aligned}
\dfrac{3^2+1}{3^2-1}+\dfrac{5^2+1}{5^2-1}+\dfrac{7^2+1}{7^2-1}+\dots+\dfrac{99^2+1}{99^2-1}&=1\cdot49+\dfrac12\left(\dfrac11-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14+\cdots+\dfrac1{48}-\dfrac1{49}+\dfrac1{49}-\dfrac1{50}\right)\\[3.5pt]
&=49+\dfrac12\left(1-\dfrac1{50}\right)\\[3.5pt]
&=49+\dfrac12\left(\dfrac{49}{50}\right)\\[3.5pt]
&=49+\dfrac{49}{100}\\
&=\boxed{\boxed{\dfrac{4949}{100}}}
\end{aligned}
Jadi, \dfrac{3^2+1}{3^2-1}+\dfrac{5^2+1}{5^2-1}+\dfrac{7^2+1}{7^2-1}+\dots+\dfrac{99^2+1}{99^2-1}=\dfrac{4949}{100} .
No.
Nilai dari ekspresi:-
\dfrac1{2!}+\dfrac1{2022!} -
\dfrac1{2!}+\dfrac1{2021!} -
\dfrac1{2!}-\dfrac1{2021!}
-
\dfrac1{2!}-\dfrac1{2022!} -
\dfrac1{2021!}-\dfrac1{2022!}
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{(k+1)+(k+2)^2}{k!+(k+1)!+(k+2)!+(k+3)!}&=\dfrac{k+1+k^2+4k+4}{k!\left(1+(k+1)+(k+2)(k+1)+(k+3)(k+2)(k+1)\right)}\\[3.5pt]
&=\dfrac{k+1+k^2+4k+4}{k!\left((k+2)+(k+2)(k+1)+(k+2)(k^2+4k+3)\right)}\\[3.5pt]
&=\dfrac{k+1+k^2+4k+4}{k!(k+2)\left(1+k+1+k^2+4k+3\right)}\\[3.5pt]
&=\dfrac{k^2+5k+5}{k!(k+2)\left(k^2+5k+5\right)}\\[3.5pt]
&=\dfrac1{k!(k+2)}\\[3.5pt]
&=\dfrac{k+1}{(k+2)!}\\[3.5pt]
&=\dfrac1{(k+1)!}-\dfrac1{(k+2)!}
\end{aligned}
\begin{aligned}
\dfrac{2+3^2}{1!+2!+3!+4!}+\dfrac{3+4^2}{2!+3!+4!+5!}+\cdots+\dfrac{2020+2021^2}{2019!+2020!+2021!+2022!}&=\dfrac1{2!}-\cancel{\dfrac1{3!}}+\cancel{\dfrac1{3!}}-\cancel{\dfrac1{4!}}+\cdots+\cancel{\dfrac1{2020!}}-\dfrac1{2021!}\\
&=\boxed{\boxed{\dfrac1{2!}-\dfrac1{2021!}}}
\end{aligned}
Jadi, \dfrac{2+3^2}{1!+2!+3!+4!}+\dfrac{3+4^2}{2!+3!+4!+5!}+\cdots+\dfrac{2020+2021^2}{2019!+2020!+2021!+2022!}=\dfrac1{2!}-\dfrac1{2021!} .
JAWAB: C
JAWAB: C
No.
Suatu hari Fara mellhat pola aneh di papan tulis kelasnya. Dia memperhatikannya terus dan mencoba mengerjakannya. Soalnya yaituALTERNATIF PENYELESAIAN
\begin{aligned}
x&=\left(\frac12\right)+2\left(\frac12\right)^2+3\left(\frac12\right)^3+4\left(\frac12\right)^4+5\left(\frac12\right)^5+\cdots\\
\dfrac12x&=\qquad\qquad\ \left(\frac12\right)^2+2\left(\frac12\right)^3+3\left(\frac12\right)^4+4\left(\frac12\right)^5+\cdots&-\\\hline
\dfrac12x&=\left(\frac12\right)+\left(\frac12\right)^2+\left(\frac12\right)^3+\left(\frac12\right)^4+\left(\frac12\right)^5+\cdots\\
&=\dfrac{\dfrac12}{1-\dfrac12}\\
&=1\\
x&=\boxed{\boxed{2}}
\end{aligned}
Jadi, x = 2.
No.
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{n+2}{n!+(n+1)!+(n+2)!}&=\dfrac{n+2}{n!+(n+1)\cdot n!+(n+2)\cdot(n+1)\cdot n!}\\
&=\dfrac{n+2}{n!\left(1+(n+1)+(n+2)\cdot(n+1)\right)}\\
&=\dfrac{n+2}{n!\left(1+n+1+n^2+3n+2\right)}\\
&=\dfrac{n+2}{n!\left(n^2+4n+4\right)}\\
&=\dfrac{n+2}{n!\left(n+2\right)^2}\\
&=\dfrac1{n!\left(n+2\right)}\\
&=\dfrac{n+1}{\left(n+2\right)\cdot(n+1)\cdot n!}\\
&=\dfrac{n+2-1}{\left(n+2\right)!}\\
&=\dfrac{n+2}{\left(n+2\right)!}-\dfrac1{\left(n+2\right)!}\\
&=\dfrac1{\left(n+1\right)!}-\dfrac1{\left(n+2\right)!}
\end{aligned}
\begin{aligned}
\dfrac3{1!+2!+3!}+\dfrac4{2!+3!+4!}+\cdots+\dfrac{2021}{2019!+2020!+2021!}&=\dfrac1{2!}-\dfrac1{3!}+\dfrac1{3!}-\dfrac1{4!}+\cdots+\dfrac1{2020!}-\dfrac1{2021!}\\
&=\dfrac1{2!}-\dfrac1{2021!}\\
&=\boxed{\boxed{\dfrac12-\dfrac1{2021!}}}
\end{aligned}
Jadi, \dfrac3{1!+2!+3!}+\dfrac4{2!+3!+4!}+\cdots+\dfrac{2021}{2019!+2020!+2021!}=\dfrac12-\dfrac1{2021!} .
No.
Bilangan-bilangan bulat positif ak, k = 1, 2, ⋯, 8 memenuhi persamaan- 6
- 7
- 8
- 10
- 12
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\sum_{k=1}^nk^2&=\dfrac{n(n+1)(2n+1)}6\\
\displaystyle\sum_{k=1}^8k^2&=\dfrac{8(8+1)(2\cdot8+1)}6\\
&=204
\end{aligned}
Sehingga ak = 1 untuk 1 ≤ k ≤ 8
\begin{aligned}
\displaystyle\sum_{k=1}^8a_k&=1\cdot8\\
&=\boxed{\boxed{8}}
\end{aligned}
Jadi, \displaystyle\sum_{k=1}^8a_k=8 .
JAWAB: C
JAWAB: C
No.
Tentukan bentuk umum barisan yang didefinisikan oleh x0 = 3, x1 = 4 danxn + 1 = xn − 12 − nxn
untuk semua n ∈ N.
ALTERNATIF PENYELESAIAN
Kita bisa buktikan dengan induksi bahwa xn = n + 3. Mudah dibuktikan benar untuk n = 0 dan n = 1.
Untuk k ≤ 1, jika xk − 1 = k + 2 dan xk = k + 3 maka
xk + 1 = xk − 12 − kxk = (k + 2)2 − k(k + 3) = k + 4
Untuk k ≤ 1, jika xk − 1 = k + 2 dan xk = k + 3 maka
xk + 1 = xk − 12 − kxk = (k + 2)2 − k(k + 3) = k + 4
Jadi, xn = n + 3.
No.
Diberikan barisan Un = (1, −1, 1, −1, ⋯) dengan n bilangan asli. Semua yang berikut merupakan rumus untuk barisan itu, kecuali....U_n=\sin\left(n-\dfrac12\right)\pi - Un = cos (n − 1)π
- Un = sin (n − 1)π
U_n=\begin{cases}1,\ \text{jika n ganjil}\\-1,\ \text{jika n genap}\end{cases}
ALTERNATIF PENYELESAIAN
Substitusikan n = 1. Hanya opsi C yang tidak menghasilkan 1.
Jadi, kecuali Un = sin (n − 1)π.
JAWAB: C
JAWAB: C
No.
Perhatikan gambar berikut. Banyaknya bulatan hitam pada gambar kesepuluh nantinya adalah ....ALTERNATIF PENYELESAIAN
Banyak bulatan hitam pada gambar ke-n adalah (4 + (n − 1)2) . Banyak bulatan hitam pada gambar ke-10 adalah
4 + 92 = 4 + 81 = 85
Jadi, banyaknya bulatan hitam pada gambar kesepuluh nantinya adalah 85.
Post a Comment