HOTS Zone : Barisan dan Deret

Berikut ini adalah kumpulan soal mengenai Barisan dan Deret. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:



No.

Tentukan nilai dari
S = 1 + 2⋅2 + 3⋅22 + 4⋅23 + ⋯ + 2022⋅22021.
  1. 22022
  2. 2021⋅22022 − 1
  3. 2021⋅22022
  1. 2021⋅22022 + 1
  2. 22022 − 1
ALTERNATIF PENYELESAIAN
\begin{aligned} S&=1+2\cdot2+3\cdot2^2+4\cdot2^3+\cdots+2022\cdot2^{2021}\\ 2S&=1\cdot2+2\cdot2^2+3\cdot2^3+\cdots+2021\cdot2^{2021}+2022\cdot2^{2022}\qquad\color{red}-\\\hline -S&=1+2+2^2+2^3+\cdots+2^{2021}-2022\cdot2^{2022}\\ &=\dfrac{1\left(2^{2022}-1\right)}{2-1}-2022\cdot2^{2022}\\ &=2^{2022}-1-2022\cdot2^{2022}\\ &=-2021\cdot2^{2022}-1\\ S&=\boxed{\boxed{2021\cdot2^{2022}+1}} \end{aligned}
Jadi, S = 1 + 2⋅2 + 3⋅22 + 4⋅23 + ⋯ + 2022⋅22021 = 2021⋅22022 + 1.
JAWAB: D

No.

Nilai dari \left(\dfrac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{\frac46} adalah
  1. \dfrac46
  2. \dfrac49
  1. \dfrac4{11}
  2. \dfrac4{13}
ALTERNATIF PENYELESAIAN
k⋅2k⋅4k = 8k3
k⋅3k⋅9k = 27k3 \begin{aligned} \left(\dfrac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{\frac46}&=\left(\dfrac{8\cdot1^3+8\cdot2^3+\cdots+8n^3}{27\cdot1^3+27\cdot2^3+\cdots+27n^3}\right)^{\frac23}\\[4pt] &=\left(\dfrac{8\left(1^3+2^3+\cdots+n^3\right)}{27\left(1^3+2^3+\cdots+n^3\right)}\right)^{\frac23}\\[3.5pt] &=\left(\dfrac8{27}\right)^{\frac23}\\[3.5pt] &=\left(\dfrac{2^3}{3^3}\right)^{\frac23}\\[3.5pt] &=\dfrac{2^2}{3^2}\\ &=\boxed{\boxed{\dfrac49}} \end{aligned}
Jadi, \left(\dfrac{1\cdot2\cdot4+2\cdot4\cdot8+\cdots+n\cdot2n\cdot4n}{1\cdot3\cdot9+2\cdot6\cdot18+\cdots+n\cdot3n\cdot9n}\right)^{\frac46}=\dfrac49.
JAWAB: B

No.

Carilah nilai \dfrac{3^2+1}{3^2-1}+\dfrac{5^2+1}{5^2-1}+\dfrac{7^2+1}{7^2-1}+\dots+\dfrac{99^2+1}{99^2-1}
ALTERNATIF PENYELESAIAN
\begin{aligned} \dfrac{(2k+1)^2+1}{(2k+1)^2-1}&=\dfrac{4k^2+4k+1+1}{4k^2+4k+1-1}\\[3.5pt] &=\dfrac{4k^2+4k+2}{4k^2+4k}\\[3.5pt] &=\dfrac{2k^2+2k+1}{2k^2+2k}\\[3.5pt] &=1+\dfrac1{2k^2+2k}\\[3.5pt] &=1+\dfrac1{2k(k+1)}\\[3.5pt] &=1+\dfrac12\left(\dfrac1k-\dfrac1{k+1}\right) \end{aligned} 99 = 2(49) + 1 \begin{aligned} \dfrac{3^2+1}{3^2-1}+\dfrac{5^2+1}{5^2-1}+\dfrac{7^2+1}{7^2-1}+\dots+\dfrac{99^2+1}{99^2-1}&=1\cdot49+\dfrac12\left(\dfrac11-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14+\cdots+\dfrac1{48}-\dfrac1{49}+\dfrac1{49}-\dfrac1{50}\right)\\[3.5pt] &=49+\dfrac12\left(1-\dfrac1{50}\right)\\[3.5pt] &=49+\dfrac12\left(\dfrac{49}{50}\right)\\[3.5pt] &=49+\dfrac{49}{100}\\ &=\boxed{\boxed{\dfrac{4949}{100}}} \end{aligned}
Jadi, \dfrac{3^2+1}{3^2-1}+\dfrac{5^2+1}{5^2-1}+\dfrac{7^2+1}{7^2-1}+\dots+\dfrac{99^2+1}{99^2-1}=\dfrac{4949}{100}.

No.

Nilai dari ekspresi:
\dfrac{2+3^2}{1!+2!+3!+4!}+\dfrac{3+4^2}{2!+3!+4!+5!}+\cdots+\dfrac{2020+2021^2}{2019!+2020!+2021!+2022!} adalah....
  1. \dfrac1{2!}+\dfrac1{2022!}
  2. \dfrac1{2!}+\dfrac1{2021!}
  3. \dfrac1{2!}-\dfrac1{2021!}
  1. \dfrac1{2!}-\dfrac1{2022!}
  2. \dfrac1{2021!}-\dfrac1{2022!}
ALTERNATIF PENYELESAIAN
\begin{aligned} \dfrac{(k+1)+(k+2)^2}{k!+(k+1)!+(k+2)!+(k+3)!}&=\dfrac{k+1+k^2+4k+4}{k!\left(1+(k+1)+(k+2)(k+1)+(k+3)(k+2)(k+1)\right)}\\[3.5pt] &=\dfrac{k+1+k^2+4k+4}{k!\left((k+2)+(k+2)(k+1)+(k+2)(k^2+4k+3)\right)}\\[3.5pt] &=\dfrac{k+1+k^2+4k+4}{k!(k+2)\left(1+k+1+k^2+4k+3\right)}\\[3.5pt] &=\dfrac{k^2+5k+5}{k!(k+2)\left(k^2+5k+5\right)}\\[3.5pt] &=\dfrac1{k!(k+2)}\\[3.5pt] &=\dfrac{k+1}{(k+2)!}\\[3.5pt] &=\dfrac1{(k+1)!}-\dfrac1{(k+2)!} \end{aligned} \begin{aligned} \dfrac{2+3^2}{1!+2!+3!+4!}+\dfrac{3+4^2}{2!+3!+4!+5!}+\cdots+\dfrac{2020+2021^2}{2019!+2020!+2021!+2022!}&=\dfrac1{2!}-\cancel{\dfrac1{3!}}+\cancel{\dfrac1{3!}}-\cancel{\dfrac1{4!}}+\cdots+\cancel{\dfrac1{2020!}}-\dfrac1{2021!}\\ &=\boxed{\boxed{\dfrac1{2!}-\dfrac1{2021!}}} \end{aligned}
Jadi, \dfrac{2+3^2}{1!+2!+3!+4!}+\dfrac{3+4^2}{2!+3!+4!+5!}+\cdots+\dfrac{2020+2021^2}{2019!+2020!+2021!+2022!}=\dfrac1{2!}-\dfrac1{2021!}.
JAWAB: C

No.

Suatu hari Fara mellhat pola aneh di papan tulis kelasnya. Dia memperhatikannya terus dan mencoba mengerjakannya. Soalnya yaitu \left(\frac12\right)+2\left(\frac12\right)^2+3\left(\frac12\right)^3+4\left(\frac12\right)^4+5\left(\frac12\right)^5+\cdots Ternyata soal tersebut menggunakan konsep deret dalam pengerjaannya. Langkah yang dilakukan oleh Fara yaitu dengan memisalkan bahwa deret yang di atas sama dengan x. Maka berapakah nilai dari x?
ALTERNATIF PENYELESAIAN
\begin{aligned} x&=\left(\frac12\right)+2\left(\frac12\right)^2+3\left(\frac12\right)^3+4\left(\frac12\right)^4+5\left(\frac12\right)^5+\cdots\\ \dfrac12x&=\qquad\qquad\ \left(\frac12\right)^2+2\left(\frac12\right)^3+3\left(\frac12\right)^4+4\left(\frac12\right)^5+\cdots&-\\\hline \dfrac12x&=\left(\frac12\right)+\left(\frac12\right)^2+\left(\frac12\right)^3+\left(\frac12\right)^4+\left(\frac12\right)^5+\cdots\\ &=\dfrac{\dfrac12}{1-\dfrac12}\\ &=1\\ x&=\boxed{\boxed{2}} \end{aligned}
Jadi, x = 2.

No.

\dfrac3{1!+2!+3!}+\dfrac4{2!+3!+4!}+\cdots+\dfrac{2021}{2019!+2020!+2021!}= ....
ALTERNATIF PENYELESAIAN
\begin{aligned} \dfrac{n+2}{n!+(n+1)!+(n+2)!}&=\dfrac{n+2}{n!+(n+1)\cdot n!+(n+2)\cdot(n+1)\cdot n!}\\ &=\dfrac{n+2}{n!\left(1+(n+1)+(n+2)\cdot(n+1)\right)}\\ &=\dfrac{n+2}{n!\left(1+n+1+n^2+3n+2\right)}\\ &=\dfrac{n+2}{n!\left(n^2+4n+4\right)}\\ &=\dfrac{n+2}{n!\left(n+2\right)^2}\\ &=\dfrac1{n!\left(n+2\right)}\\ &=\dfrac{n+1}{\left(n+2\right)\cdot(n+1)\cdot n!}\\ &=\dfrac{n+2-1}{\left(n+2\right)!}\\ &=\dfrac{n+2}{\left(n+2\right)!}-\dfrac1{\left(n+2\right)!}\\ &=\dfrac1{\left(n+1\right)!}-\dfrac1{\left(n+2\right)!} \end{aligned} \begin{aligned} \dfrac3{1!+2!+3!}+\dfrac4{2!+3!+4!}+\cdots+\dfrac{2021}{2019!+2020!+2021!}&=\dfrac1{2!}-\dfrac1{3!}+\dfrac1{3!}-\dfrac1{4!}+\cdots+\dfrac1{2020!}-\dfrac1{2021!}\\ &=\dfrac1{2!}-\dfrac1{2021!}\\ &=\boxed{\boxed{\dfrac12-\dfrac1{2021!}}} \end{aligned}
Jadi, \dfrac3{1!+2!+3!}+\dfrac4{2!+3!+4!}+\cdots+\dfrac{2021}{2019!+2020!+2021!}=\dfrac12-\dfrac1{2021!}.

No.

Bilangan-bilangan bulat positif ak, k = 1, 2, ⋯, 8 memenuhi persamaan \displaystyle\sum_{k=1}^8\left(k\times a_k\right)^2=204. Hasil dari \displaystyle\sum_{k=1}^8a_k
  1. 6
  2. 7
  3. 8
  1. 10
  2. 12
ALTERNATIF PENYELESAIAN
\begin{aligned} \displaystyle\sum_{k=1}^nk^2&=\dfrac{n(n+1)(2n+1)}6\\ \displaystyle\sum_{k=1}^8k^2&=\dfrac{8(8+1)(2\cdot8+1)}6\\ &=204 \end{aligned} Sehingga ak = 1 untuk 1 ≤ k ≤ 8 \begin{aligned} \displaystyle\sum_{k=1}^8a_k&=1\cdot8\\ &=\boxed{\boxed{8}} \end{aligned}
Jadi, \displaystyle\sum_{k=1}^8a_k=8.
JAWAB: C

No.

Tentukan bentuk umum barisan yang didefinisikan oleh x0 = 3, x1 = 4 dan
xn + 1 = xn − 12nxn
untuk semua nN.
ALTERNATIF PENYELESAIAN
Kita bisa buktikan dengan induksi bahwa xn = n + 3. Mudah dibuktikan benar untuk n = 0 dan n = 1.
Untuk k ≤ 1, jika xk − 1 = k + 2 dan xk = k + 3 maka
xk + 1 = xk − 12 − kxk = (k + 2)2 − k(k + 3) = k + 4
Jadi, xn = n + 3.

No.

Diberikan barisan Un = (1, −1, 1, −1, ⋯) dengan n bilangan asli. Semua yang berikut merupakan rumus untuk barisan itu, kecuali....
  1. U_n=\sin\left(n-\dfrac12\right)\pi
  2. Un = cos (n − 1)π
  1. Un = sin (n − 1)π
  2. U_n=\begin{cases}1,\ \text{jika n ganjil}\\-1,\ \text{jika n genap}\end{cases}
ALTERNATIF PENYELESAIAN
Substitusikan n = 1. Hanya opsi C yang tidak menghasilkan 1.
Jadi, kecuali Un = sin (n − 1)π.
JAWAB: C

No.

Perhatikan gambar berikut.
Banyaknya bulatan hitam pada gambar kesepuluh nantinya adalah ....
ALTERNATIF PENYELESAIAN
Banyak bulatan hitam pada gambar ke-n adalah (4 + (n − 1)2). Banyak bulatan hitam pada gambar ke-10 adalah
4 + 92 = 4 + 81 = 85
Jadi, banyaknya bulatan hitam pada gambar kesepuluh nantinya adalah 85.