Exercise Zone : Faktorial
Table of Contents

Tipe:
No.
Hitunglah nilai n. \[\dfrac{(n-2)!}{(n-3)!}=6\]ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{(n-2)!}{(n-3)!}&=6\\
\dfrac{(n-2)\cdot(n-3)!}{(n-3)!}&=6\\
n-2&=6\\
n&=\boxed{\boxed{8}}
\end{aligned}
Jadi, n = 8.
No.
Nilai n yang memenuhi persamaan $\dfrac{(n+3)!}{n!}=8n^2+10n+8$ adalah.....- 1
- 2
- 3
- 4
- 5
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac{(n+3)!}{n!}&=8n^2+10n+8\\[4pt]
\dfrac{(n+3)\cdot(n+2)\cdot(n+1)\cdot n!}{n!}&=8n^2+10n+8\\[4pt]
n^3+6n^2+11n+6&=8n^2+10n+8\\[4pt]
n^3-2n^2+n-2&=0\\
n^2(n-2)+(n-2)&=0\\
\left(n^2+1\right)(n-2)&=0\\
n-2&=0\\
n&=\color{blue}\boxed{\boxed{\color{black}2}}
\end{aligned}\)
Jadi, nilai n yang memenuhi persamaan $\dfrac{(n+3)!}{n!}=8n^2+10n+8$ adalah 2.
JAWAB: B
JAWAB: B
Post a Comment