Exercise Zone : Fungsi Komposisi
Table of Contents

Tipe:
No.
DiketahuiALTERNATIF PENYELESAIAN
\begin{aligned}
\left(g\circ f\right)(x)&=2x+1\\
g\left(f(x)\right)&=2x+1\\
g(2x-3)&=2x+1
\end{aligned}
CARA BIASA | CARA CEPAT |
---|---|
Misal 2x − 3 = u \begin{aligned} 2x&=u+3\\ x&=\dfrac{u+3}2 \end{aligned} \begin{aligned} g(2x-3)&=2x+1\\ g(u)&=2\left(\dfrac{u+3}2\right)+1\\[3.5pt] &=u+3+1\\ &=u+4\\ g(x)&=\boxed{\boxed{x+4}}\end{aligned} | \begin{aligned} g(2x-3)&=2x+1\\ g(2x-3)&=2x{\color{blue}{-3+3}}+1\\ g({\color{blue}{2x-3}})&={\color{blue}{2x-3}}+4\\ g(x)&=\boxed{\boxed{x+4}} \end{aligned} |
Jadi, g(x) = x + 4.
No.
Jika- 13
- 14
- 15
- 16
- 17
ALTERNATIF PENYELESAIAN
CARA 1
\(\begin{aligned} g\left(f(x)\right)&=4x+9\\ g(5x+3)&=4x+9 \end{aligned}\)Misal
\(\begin{aligned} g(p)&=4\left(\dfrac{p-3}5\right)+9\\[4pt] &=\dfrac{4p-12}5+\dfrac{45}5\\[4pt] &=\dfrac{4p+33}5\\[4pt] g(13)&=\dfrac{4(13)+33}5\\[4pt] &=\dfrac{52+33}5\\[4pt] &=\dfrac{85}5\\ &=\boxed{\boxed{17}} \end{aligned}\)
CARA 2
\(\begin{aligned} f(x)&=13\\ 5x+3&=13\\ 5x&=10\\ x&=2 \end{aligned}\)\(\begin{aligned} g(f(x))&=4x+9\\ g(13)&=4(2)+9\\ &=\boxed{\boxed{17}} \end{aligned}\)
Jadi, g(13) = 17.
No.
Diketahui- x2 − 2x
- x2 − 2x − 1
- x2 − 2x + 1
- x2 + 2x + 1
- x2 + 2x − 1
ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(g\circ f\right)(x)&=4x^2+16x+16\\
g(f(x))&=4x^2+16x+16\\
g(2x+3)&=4x^2+16x+16
\end{aligned}
CARA BIASA
Misal t = 2x + 3 \begin{aligned} t-3&=2x\\ \dfrac{t-3}2&=x\\ x&=\dfrac{t-3}2 \end{aligned} \begin{aligned} g(t)&=4\left(\dfrac{t-3}2\right)^2+16\left(\dfrac{t-3}2\right)+16\\ &=4\left(\dfrac{t^2-6t+9}4\right)+8(t-3)+16\\ &=t^2-6t+9+8t-24+16\\ &=t^2+2t+1\\ g(x)&=\boxed{\boxed{x^2+2x+1}} \end{aligned}CARA CEPAT
\begin{aligned} g(2x+3)&=4x^2+12x+9+4x+7\\ &=4x^2+12x+9+4x+6+1\\ &=(2x+3)^2+2(2x+3)+1\\ g(x)&=\boxed{\boxed{x^2+2x+1}} \end{aligned}
Jadi, g(x) = x2 + 2x + 1.
JAWAB: D
JAWAB: D
No.
Jika- 5
- 6
- 7
- 8
- 9
ALTERNATIF PENYELESAIAN
\begin{aligned}
(f\circ g)(3)&=f(g(3))\\
&=f(3-2)\\
&=f(1)
\end{aligned}
\begin{aligned}
(g\circ f)(1)&=1^2+2(1)+3\\
g(f(1))&=1+2+3\\
f(1)-2&=6\\
f(1)&=8\\
(f\circ g)(3)&=\boxed{\boxed{8}}
\end{aligned}
Jadi, (f ∘ g)(3) = 8.
JAWAB: D
JAWAB: D
No.
Diketahui- 3x2 − 2x + 5
- 3x2 − 2x + 37
- 3x2 − 2x + 50
- 3x2 + 2x − 5
- 3x2 + 2x − 50
ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(f\circ g\right)(x)&=12x^2+32x+26\\
f\left(g(x)\right)&=12x^2+32x+26\\
f\left(2x+3\right)&=12x^2+32x+26
\end{aligned}
CARA 1
Misal \begin{aligned} 2x+3&=u\\ 2x&=u-3\\ x&=\dfrac{u-3}2 \end{aligned} \begin{aligned} f\left(u\right)&=12\left(\dfrac{u-3}2\right)^2+32\left(\dfrac{u-3}2\right)+26\\[3.5pt] &=12\left(\dfrac{u^2-6u+9}4\right)+16\left(u-3\right)+26\\[3.5pt] &=3\left(u^2-6u+9\right)+16u-48+26\\ &=3u^2-18u+27+16u-22\\ &=3u^2-2u+5\\ f(x)&=\boxed{\boxed{3x^2-2x+5}} \end{aligned}CARA 2
\begin{aligned} f\left(2x+3\right)&=12x^2+36x+27-4x-1\\ &=3\left(4x^2+12x+9\right)-4x-6+5\\ &=3\left(2x+3\right)^2-2(2x+3)+5\\ f(x)&=\boxed{\boxed{3x^2-2x+5}} \end{aligned}Jadi, f(x) = 3x2 − 2x + 5.
JAWAB: A
JAWAB: A
No.
Jika \(g(x)=\dfrac{ax+2}{x+3}\) dan \(h(x)=\dfrac{5x-4}{-x+a}\), nilai- 1
- 2
- 3
- 4
- 5
ALTERNATIF PENYELESAIAN
\begin{aligned}
(g\circ h)(1)&=2\\
g(h(1))&=2\\
g\left(\dfrac{5(1)-4}{-1+a}\right)&=2\\[3.5pt]
g\left(\dfrac1{a-1}\right)&=2\\[3.5pt]
\dfrac{a\left(\dfrac1{a-1}\right)+2}{\dfrac1{a-1}+3}&=2\\[3.5pt]
\dfrac{\dfrac{a+2(a-1)}{a-1}}{\dfrac{1+3(a-1)}{a-1}}&=2\\[3.5pt]
\dfrac{\dfrac{a+2a-2}{a-1}}{\dfrac{1+3a-3}{a-1}}&=2\\[3.5pt]
\dfrac{\dfrac{3a-2}{a-1}}{\dfrac{3a-2}{a-1}}&=2\\[3.5pt]
\dfrac{3a-2}{3a-2}&=2\\[3.5pt]
3a-2&=6a-4\\
3a&=\boxed{\boxed{2}}
\end{aligned}
Jadi, 3a = 2.
JAWAB: B
JAWAB: B
No.
Diketahui fungsi- 2
- 3
- 4
- 5
- 6
ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(g\circ f\right)(1)&=53\\
g\left(f(1)\right)&=53\\
g\left(5(1)+3\right)&=53\\
g(8)&=53\\
8^2+a(8)+b&=53\\
64+8a+b&=53\\
8a+b&=-11
\end{aligned}
\begin{aligned}
\left(g\circ f\right)(1)&=53\\
g\left(f(0)\right)&=8\\
g\left(5(0)+3\right)&=8\\
g(3)&=8\\
3^2+a(3)+b&=8\\
9+3a+b&=8\\
3a+b&=-1
\end{aligned}
\begin{aligned}
8a+b&=-11\\
3a+b&=-1&-\\\hline
5a&=-10\\
a&=-2
\end{aligned}
\begin{aligned}
3a+b&=-1\\
3(-2)+b&=-1\\
-6+b&=-1\\
b&=5
\end{aligned}
\begin{aligned}
a+b&=-2+5\\
&=\boxed{\boxed{3}}
\end{aligned}
Jadi, a + b = 3.
JAWAB: B
JAWAB: B
No.
Jika \(f(x)=\dfrac3{2x-1}\) dan \(\left(f\circ g\right)(x)=\dfrac{3x+3}{x-1}\), maka- \(\dfrac{x+2}x\), x ≠ 0
- \(\dfrac{x-2}x\), x ≠ 0
- \(\dfrac{x+1}x\), x ≠ 0
- \(\dfrac{x-1}x\), x ≠ 0
- \(\dfrac{x}{x+1}\), x ≠ −1
ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(f\circ g\right)(x)&=\dfrac{3x+3}{x-1}\\[3.5pt]
f\left( g(x)\right)&=\dfrac{3x+3}{x-1}\\[3.5pt]
\dfrac3{2g(x)-1}&=\dfrac{3x+3}{x-1}\\[3.5pt]
\left(2g(x)-1\right)(3x+3)&=3(x-1)\\
2(3x+3)g(x)-3x-3&=3x-3\\
(6x+6)g(x)&=6x\\
g(x)&=\dfrac{6x}{6x+6}\color{red}\dfrac{:6}{:6}\\[3.5pt]
&=\dfrac{x}{x+1}\\[3.5pt]
g(x-1)&=\dfrac{x-1}{x-1+1}\\
&=\boxed{\boxed{\dfrac{x-1}x}}
\end{aligned}
Jadi, g(x-1)=\dfrac{x-1}x\).
JAWAB: D
JAWAB: D
No.
Diketahui- 3
- 5
- 6
- 8
- 9
ALTERNATIF PENYELESAIAN
\begin{aligned} \left(g\circ f\right)(a)&=21\\
g\left(f(a)\right)&=21\\
g\left(a^2-5a+1\right)&=21\\
a^2-5a+1-4&=21\\
a^2-5a-3&=21\\
a^2-5a-24&=0\\
(a-8)(a+3)&=0\end{aligned}
a = 8 atau a = −3
Jadi, a = 8.
JAWAB: D
JAWAB: D
No.
DiketahuiALTERNATIF PENYELESAIAN
\begin{aligned}
\left(f\circ g\right)(x)&=\left(g\circ f\right)(x)\\
f\left(g(x)\right)&=g\left(f(x)\right)\\
f\left(4x-120\right)&=g\left(3x+p\right)\\
3\left(4x-120\right)+p&=4\left(3x+p\right)-120\\
12x-360+p&=12x+4p-120\\
-360+p&=4p-120\\
-3p&=240\\
p&=\dfrac{240}{-3}\\
&=-80
\end{aligned}
\begin{aligned}
f(x)&=3x-80\\
f(20)&=3(20)-80\\
&=60-80\\
&=\boxed{\boxed{-20}}
\end{aligned}
Jadi, f(20) = −20.
Post a Comment