Exercise Zone : Hubungan Garis dan Lingkaran
Table of Contents

Tipe:
No.
Garis y = x − 3 menyinggung lingkaran x2 + y2 − 6x − 2y + z = 0. Tentukan nilai z.ALTERNATIF PENYELESAIAN
\begin{aligned}
x^2+y^2-6x-2y+z&=0\\
x^2+(x-3)^2-6x-2(x-3)+z&=0\\
x^2+x^2-6x+9-6x-2x+6+z&=0\\
2x^2-14x+z+15&=0
\end{aligned}
a = 2, b = −14, c = z + 15
\begin{aligned}
D&=0\\
b^2-4ac&=0\\
(-14)^2-4(2)(z+15)&=0\\
196-8z-120&=0\\
-8z+76&=0\\
-8z&=-76\\
z&=\dfrac{-76}{-8}\\
&=\boxed{\boxed{\dfrac{19}2}}
\end{aligned}
Jadi, z=\dfrac{19}2 .
No.
Garis y = x + m akan memotong lingkaran x2 + y2 = 9 di dua titik yang berbeda. Tentukan nilai m yang memenuhi.ALTERNATIF PENYELESAIAN
\begin{aligned}
x^2+y^2&=9\\
x^2+(x+m)^2&=9\\
x^2+x^2+2mx+m^2-9&=0\\
2x^2+2mx+m^2-9&=0
\end{aligned}
a = 2, b = 2m, c = m2 − 9
\begin{aligned}
D&\gt0\\
b^2-4ac&\gt0\\
(2m)^2-4(2)(m^2-9)&\gt0\\
4m^2-8m^2+72&\gt0\\
-4m^2+72&\gt0\qquad&{\color{red}:-4}\\
m^2-18&\lt0\\
\left(m+\sqrt{18}\right)\left(m-\sqrt{18}\right)&\lt0\\
\left(m+3\sqrt2\right)\left(m-3\sqrt2\right)&\lt0
\end{aligned}
{-3\sqrt2\lt m\lt3\sqrt2}
Jadi, nilai m yang memenuhi adalah {-3\sqrt2\lt m\lt3\sqrt2} .
Post a Comment