Exercise Zone : Integral Tak Tentu

Table of Contents
Berikut ini adalah kumpulan soal mengenai integral tak tentu tipe standar. Jika ingin bertanya soal, silahkan gabung ke grup Facebook atau Telegram.

Tipe:

StandarSNBTHOTS


No.

\displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx= ....
  1. \dfrac18\sqrt{x^2+4x-6}+C
  2. \dfrac14\sqrt{x^2+4x-6}+C
  3. \dfrac12\sqrt{x^2+4x-6}+C
  1. \sqrt{x^2+4x-6}+C
  2. 2\sqrt{x^2+4x-6}+C
ALTERNATIF PENYELESAIAN
Misal u = x2 + 4x − 6 \begin{aligned} du&=(2x+4)\ dx\\ du&=2(x+2)\ dx\\ (x+2)\ dx&=\dfrac12du \end{aligned}
\begin{aligned} \displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx&=\dfrac12\displaystyle\int\dfrac1{\sqrt{u}}\ du\\ &=\dfrac12\displaystyle\int\dfrac1{u^{\frac12}}\ du\\ &=\dfrac12\displaystyle\int u^{-\frac12}\ du\\ &=\dfrac12\left(2u^{\frac12}\right)+C\\ &=\sqrt{u}+C\\ &=\boxed{\boxed{\sqrt{x^2+4x-6}+C}} \end{aligned}
Jadi, \displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx=\sqrt{x^2+4x-6}+C.
JAWAB: D

No.

Hasil dari \displaystyle\int-720x^2\sqrt{9-4x^3}\ dx=
  1. {80\left(9-4x^3\right)\sqrt{9-4x^3}+C}
  2. {60\left(9-4x^3\right)\sqrt{9-4x^3}+C}
  3. {40\left(9-4x^3\right)\sqrt{9-4x^3}+C}
  1. {20\left(9-4x^3\right)\sqrt{9-4x^3}+C}
  2. {10\left(9-4x^3\right)\sqrt{9-4x^3}+C}
ALTERNATIF PENYELESAIAN
Misal u = 9 − 4x3
du = −12x2 dx \begin{aligned} \displaystyle\int-720x^2\sqrt{9-4x^3}\ dx&=\displaystyle\int60\left(-12x^2\right)\sqrt{9-4x^3}\ dx\\ &=\displaystyle\int60\sqrt{u}\ du\\ &=\displaystyle\int60u^{\frac12}\ du\\ &=60\cdot\dfrac23u^{\frac32}+C\\ &=40u\sqrt{u}+C\\ &=\boxed{\boxed{40\left(9-4x^3\right)\sqrt{9-4x^3}+C}} \end{aligned}
Jadi, \displaystyle\int-720x^2\sqrt{9-4x^3}\ dx=40\left(9-4x^3\right)\sqrt{9-4x^3}+C.
JAWAB: C

No.

\displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx adalah
  1. \dfrac12x^2-2x+\ln x+C
  2. x^2-2+\dfrac1x+C
  3. x2 − 2x + x−1 + C
  1. \dfrac12x^2-2x+x^{-1}+C
  2. \dfrac12x^2-2+\dfrac1x+C
ALTERNATIF PENYELESAIAN
\begin{aligned} \displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx&=\displaystyle\int\left(\left(\dfrac1{\sqrt{x}}\right)^2-2\cdot\dfrac1{\sqrt{x}}\cdot\sqrt{x}+\left(\sqrt{x}\right)^2\right)\ dx\\ &=\displaystyle\int\left(\dfrac1x-2+x\right)\ dx\\ &=\ln x-2x+\dfrac12x^2+C\\ &=\boxed{\boxed{\dfrac12x^2-2x+\ln x+C}} \end{aligned}
Jadi, \displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx=\dfrac12x^2-2x+\ln x+C.
JAWAB: A

No.

\displaystyle\int2\sqrt{x}\ dx= ...
  1. \sqrt{x}+C
  2. x\sqrt{x}+C
  1. 2\sqrt{x}+C
  2. \dfrac43x\sqrt{x}+C
ALTERNATIF PENYELESAIAN
\begin{aligned} \displaystyle\int2\sqrt{x}\ dx&=\displaystyle\int2x^{\frac12}\ dx\\ &=2\cdot\dfrac23x^{\frac32}+C\\ &=\boxed{\boxed{\dfrac43x\sqrt{x}+C}} \end{aligned}
Jadi, \displaystyle\int2\sqrt{x}\ dx=\dfrac43x\sqrt{x}+C.
JAWAB: D

No.

\int\frac{e^{8+\frac1x}}{x^2}\ dx=....
  1. \dfrac{e^{8+\frac1x}}{x^2}+C
  2. -\dfrac{e^{8+\frac1x}}{x^2}+C
  1. e^{8+\frac1x}+C
  2. -e^{8+\frac1x}+C
ALTERNATIF PENYELESAIAN
Misalkan u=8+\dfrac1x.
du=-\dfrac1{x^2}\ dx \begin{aligned} \int\frac{e^{8+\frac1x}}{x^2}\ dx&=-\int\left(e^{8+\frac1x}\right)\left(-\frac1{x^2}\right)\ dx\\ &=-\int e^u\ du\\ &=-e^u+C\\ &=\boxed{\boxed{-e^{8+\frac1x}+C}} \end{aligned}
Jadi, \int\frac{e^{8+\frac1x}}{x^2}\ dx=-e^{8+\frac1x}+C.
JAWAB: D



Post a Comment