Exercise Zone : Integral Tak Tentu
Table of Contents

Tipe:
No.
\dfrac18\sqrt{x^2+4x-6}+C \dfrac14\sqrt{x^2+4x-6}+C \dfrac12\sqrt{x^2+4x-6}+C
\sqrt{x^2+4x-6}+C 2\sqrt{x^2+4x-6}+C
ALTERNATIF PENYELESAIAN
Misal u = x2 + 4x − 6
\begin{aligned}
du&=(2x+4)\ dx\\
du&=2(x+2)\ dx\\
(x+2)\ dx&=\dfrac12du
\end{aligned}
\begin{aligned}
\displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx&=\dfrac12\displaystyle\int\dfrac1{\sqrt{u}}\ du\\
&=\dfrac12\displaystyle\int\dfrac1{u^{\frac12}}\ du\\
&=\dfrac12\displaystyle\int u^{-\frac12}\ du\\
&=\dfrac12\left(2u^{\frac12}\right)+C\\
&=\sqrt{u}+C\\
&=\boxed{\boxed{\sqrt{x^2+4x-6}+C}}
\end{aligned}
Jadi, \displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx=\sqrt{x^2+4x-6}+C .
JAWAB: D
JAWAB: D
No.
Hasil dari{80\left(9-4x^3\right)\sqrt{9-4x^3}+C} {60\left(9-4x^3\right)\sqrt{9-4x^3}+C} {40\left(9-4x^3\right)\sqrt{9-4x^3}+C}
{20\left(9-4x^3\right)\sqrt{9-4x^3}+C} {10\left(9-4x^3\right)\sqrt{9-4x^3}+C}
ALTERNATIF PENYELESAIAN
Misal u = 9 − 4x3
du = −12x2 dx \begin{aligned} \displaystyle\int-720x^2\sqrt{9-4x^3}\ dx&=\displaystyle\int60\left(-12x^2\right)\sqrt{9-4x^3}\ dx\\ &=\displaystyle\int60\sqrt{u}\ du\\ &=\displaystyle\int60u^{\frac12}\ du\\ &=60\cdot\dfrac23u^{\frac32}+C\\ &=40u\sqrt{u}+C\\ &=\boxed{\boxed{40\left(9-4x^3\right)\sqrt{9-4x^3}+C}} \end{aligned}
du = −12x2 dx \begin{aligned} \displaystyle\int-720x^2\sqrt{9-4x^3}\ dx&=\displaystyle\int60\left(-12x^2\right)\sqrt{9-4x^3}\ dx\\ &=\displaystyle\int60\sqrt{u}\ du\\ &=\displaystyle\int60u^{\frac12}\ du\\ &=60\cdot\dfrac23u^{\frac32}+C\\ &=40u\sqrt{u}+C\\ &=\boxed{\boxed{40\left(9-4x^3\right)\sqrt{9-4x^3}+C}} \end{aligned}
Jadi, \displaystyle\int-720x^2\sqrt{9-4x^3}\ dx=40\left(9-4x^3\right)\sqrt{9-4x^3}+C .
JAWAB: C
JAWAB: C
No.
\dfrac12x^2-2x+\ln x+C x^2-2+\dfrac1x+C - x2 − 2x + x−1 + C
\dfrac12x^2-2x+x^{-1}+C \dfrac12x^2-2+\dfrac1x+C
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx&=\displaystyle\int\left(\left(\dfrac1{\sqrt{x}}\right)^2-2\cdot\dfrac1{\sqrt{x}}\cdot\sqrt{x}+\left(\sqrt{x}\right)^2\right)\ dx\\
&=\displaystyle\int\left(\dfrac1x-2+x\right)\ dx\\
&=\ln x-2x+\dfrac12x^2+C\\
&=\boxed{\boxed{\dfrac12x^2-2x+\ln x+C}}
\end{aligned}
Jadi, \displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx=\dfrac12x^2-2x+\ln x+C .
JAWAB: A
JAWAB: A
No.
\sqrt{x}+C x\sqrt{x}+C
2\sqrt{x}+C \dfrac43x\sqrt{x}+C
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\int2\sqrt{x}\ dx&=\displaystyle\int2x^{\frac12}\ dx\\
&=2\cdot\dfrac23x^{\frac32}+C\\
&=\boxed{\boxed{\dfrac43x\sqrt{x}+C}}
\end{aligned}
Jadi, \displaystyle\int2\sqrt{x}\ dx=\dfrac43x\sqrt{x}+C .
JAWAB: D
JAWAB: D
No.
\dfrac{e^{8+\frac1x}}{x^2}+C -\dfrac{e^{8+\frac1x}}{x^2}+C
e^{8+\frac1x}+C -e^{8+\frac1x}+C
ALTERNATIF PENYELESAIAN
Misalkan u=8+\dfrac1x .
du=-\dfrac1{x^2}\ dx
\begin{aligned}
\int\frac{e^{8+\frac1x}}{x^2}\ dx&=-\int\left(e^{8+\frac1x}\right)\left(-\frac1{x^2}\right)\ dx\\
&=-\int e^u\ du\\
&=-e^u+C\\
&=\boxed{\boxed{-e^{8+\frac1x}+C}}
\end{aligned}
Jadi, \int\frac{e^{8+\frac1x}}{x^2}\ dx=-e^{8+\frac1x}+C .
JAWAB: D
JAWAB: D
Post a Comment