Exercise Zone : Limit [4]
Table of Contents

Tipe:
No.
Tentukan nilai limit dengan "memfaktorkan / bentuk akar sekawan" berikut :\displaystyle\lim_{x\to2}\dfrac{x^2+2x-8}{x-2} = ....\displaystyle\lim_{x\to2}\dfrac{\sqrt{x}(x-2)}{\sqrt{x}-\sqrt2} = ....
ALTERNATIF PENYELESAIAN
\begin{aligned} \lim_{x\to2}\frac{x^2+2x-8}{x-2}&=\lim_{x\to2}\frac{(x+4)(x-2)}{x-2}\\[3.7pt] &=\lim_{x\to2}(x+4)\\ &=2+4\\ &=\boxed{\boxed{6}} \end{aligned}
\begin{aligned} \lim_{x\to2}\frac{\sqrt{x}(x-2)}{\sqrt{x}-\sqrt2}&=\lim_{x\to2}\frac{\sqrt{x}(x-2)}{\sqrt{x}-\sqrt2}\cdot\frac{\sqrt{x}+\sqrt2}{\sqrt{x}+\sqrt2}\\[3.7pt] &=\lim_{x\to2}\frac{\sqrt{x}(x-2)\left(\sqrt{x}+\sqrt2\right)}{x-2}\\[3.7pt] &=\lim_{x\to2}\sqrt{x}\left(\sqrt{x}+\sqrt2\right)\\ &=\sqrt{2}\left(\sqrt{2}+\sqrt2\right)\\ &=\sqrt{2}\left(2\sqrt2\right)\\ &=2\cdot2\\ &=\boxed{\boxed{4}} \end{aligned}
Jadi,
\displaystyle\lim_{x\to2}\dfrac{x^2+2x-8}{x-2}=6 \displaystyle\lim_{x\to2}\dfrac{\sqrt{x}(x-2)}{\sqrt{x}-\sqrt2}=4
No.
ALTERNATIF PENYELESAIAN
\begin{aligned}
\lim_{x\to4}\dfrac{3x^2-48x}{x^2-16}&=\lim_{x\to4}\dfrac{3x\color{red}{\left(x^2-16\right)}}{\color{red}{x^2-16}}\\
&=\lim_{x\to4}3x\\
&=3(4)\\
&=\boxed{\boxed{12}}
\end{aligned}
Jadi, \displaystyle\lim_{x\to4}\dfrac{3x^2-48x}{x^2-16}=12 .
No.
Nilai dariALTERNATIF PENYELESAIAN
Menggunakan teknik substitusi langsung. \begin{aligned}
\displaystyle\lim_{x\to4}\sqrt[3]{3x^2+7x-12}+\displaystyle\lim_{x\to5}\left(\sqrt{3x^2-11}-3x\right)&=\sqrt[3]{3(4)^2+7(4)-12}+\left(\sqrt{3(5)^2-11}-3(5)\right)\\
&=\sqrt[3]{48+28-12}+\sqrt{75-11}-15\\
&=\sqrt[3]{64}+\sqrt{64}-15\\
&=4+8-15\\
&=\boxed{\boxed{-3}}
\end{aligned}
Jadi, nilai dari \displaystyle\lim_{x\to4}\sqrt[3]{3x^2+7x-12}+\displaystyle\lim_{x\to5}\left(\sqrt{3x^2-11}-3x\right) adalah −3.
No.
Diketahui$f(x)=\begin{cases}3x-p,\ x\leq2\\2x+1,\ x\gt2\end{cases}$
Agar
- −2
- −1
- 0
- 1
- 2
ALTERNATIF PENYELESAIAN
Berdasarkan definisi limit, agar \displaystyle\lim_{x\to2}f(x) mempunyai nilai maka Limit kiri = Limit Kanan. Secara simbol dituliskan
\displaystyle\lim_{x\to2^+}f(x)=\displaystyle\lim_{x\to2^-}f(x)=L
Limit kiri: \begin{aligned}\displaystyle\lim_{x\to2^-}f(x)&=\displaystyle\lim_{x\to2^-}(3x-p)\\ &=3(2)-p\\ &=6-p \end{aligned} Limit kanan: \begin{aligned}\displaystyle\lim_{x\to2^+}f(x)&=\displaystyle\lim_{x\to2^+}(2x+1)\\ &=2(2)+1\\ &=5 \end{aligned} \begin{aligned} 6-p&=5\\ 6-5&=p\\ p&=\boxed{\boxed{1}} \end{aligned}
Limit kiri: \begin{aligned}\displaystyle\lim_{x\to2^-}f(x)&=\displaystyle\lim_{x\to2^-}(3x-p)\\ &=3(2)-p\\ &=6-p \end{aligned} Limit kanan: \begin{aligned}\displaystyle\lim_{x\to2^+}f(x)&=\displaystyle\lim_{x\to2^+}(2x+1)\\ &=2(2)+1\\ &=5 \end{aligned} \begin{aligned} 6-p&=5\\ 6-5&=p\\ p&=\boxed{\boxed{1}} \end{aligned}
Jadi, p = 1.
JAWAB: D
JAWAB: D
Post a Comment