Exercise Zone : Logaritma [3]
Table of Contents

Tipe:
No.
TentukanALTERNATIF PENYELESAIAN
\begin{aligned}
\log25\times{^2\negthinspace\log10}\times{^5\negthinspace\log4}&=\log25\times{^5\negthinspace\log4}\times{^2\negthinspace\log10}\\
&=\log25\times{^5\negthinspace\log2^2}\times{^2\negthinspace\log10}\\
&=\log25\times2\times{^5\negthinspace\log2}\times{^2\negthinspace\log10}\\
&=2\times\log25\times{^5\negthinspace\log10}\\
&=2\times\dfrac{\log25}{\log5}\\
&=2\times{^5\negthinspace\log25}\\
&=2\times2\\
&=\boxed{\boxed{4}}
\end{aligned}
Jadi, log 25 × 2log 10 × 5log 4 = 4 .
No.
JikaALTERNATIF PENYELESAIAN
\begin{aligned}
^6\negthinspace\log50&=\dfrac{^2\negthinspace\log50}{^2\negthinspace\log6}\\
&=\dfrac{^2\negthinspace\log\left(5^2\cdot2\right)}{^2\negthinspace\log(3\cdot2)}\\
&=\dfrac{{^2\negthinspace\log5^2}+{^2\negthinspace\log2}}{{^2\negthinspace\log3}+{^2\negthinspace\log2}}\\
&=\dfrac{2\ {^2\negthinspace\log5}+{^2\negthinspace\log2}}{{^2\negthinspace\log3}+{^2\negthinspace\log2}}\\
&=\boxed{\boxed{\dfrac{2b+1}{a+1}}}
\end{aligned}
Jadi, ^6\negthinspace\log50=\dfrac{2b+1}{a+1} .
No.
ALTERNATIF PENYELESAIAN
\begin{aligned}
{^2\negthinspace\log1}+{^3\negthinspace\log3}-{^5\negthinspace\log2}+{^5\negthinspace\log50}-{^8\negthinspace\log32}&={^2\negthinspace\log1}+{^3\negthinspace\log3}+{^5\negthinspace\log50}-{^5\negthinspace\log2}-{^{2^3}\negthinspace\log{2^5}}\\
&=0+1+{^5\negthinspace\log\dfrac{50}2}-\dfrac53\\
&=1+{^5\negthinspace\log25}-\dfrac53\\
&=1+2-\dfrac53\\
&=\boxed{\boxed{\dfrac43}}
\end{aligned}
Jadi, {^2\negthinspace\log1}+{^3\negthinspace\log3}-{^5\negthinspace\log2}+{^5\negthinspace\log50}-{^8\negthinspace\log32}=\dfrac43 .
No.
ALTERNATIF PENYELESAIAN
\begin{aligned}
{^5\negthinspace\log35}+{^5\negthinspace\log55}-{^5\negthinspace\log77}&={^5\negthinspace\log\dfrac{35\cdot55}{77}}\\
&={^5\negthinspace\log25}\\
&=\boxed{\boxed{2}}
\end{aligned}
Jadi, 5log 35 + 5log 55 − 5log 77 = 2 .
No.
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{a^2}{b^2}&=4\\
\left(\dfrac{a}b\right)^2&=4\\
\dfrac{a}b&=2
\end{aligned}
\begin{aligned}
\log\dfrac{a^3}{b^3}&=\log\left(\dfrac{a}b\right)^3\\
&=\log2^3\\
&=\boxed{\boxed{\log8}}
\end{aligned}
Jadi, \log\dfrac{a^3}{b^3}=\log8 .
No.
SederhanakanALTERNATIF PENYELESAIAN
\begin{aligned}
{^3\negthinspace\log\dfrac13}&={^3\negthinspace\log3^{-1}}\\
&=\boxed{\boxed{-1}}
\end{aligned}
Jadi, {^3\negthinspace\log\dfrac13}=-1 .
No.
JikaALTERNATIF PENYELESAIAN
\begin{aligned}
{^{50}\negthinspace\log90}&=\dfrac{^2\negthinspace\log90}{^2\negthinspace\log50}\\
&=\dfrac{^2\negthinspace\log\left(5\cdot3^2\cdot2\right)}{^2\negthinspace\log\left(5^2\cdot2\right)}\\
&=\dfrac{{^2\negthinspace\log5}+2\ {^2\negthinspace\log3}+{^2\negthinspace\log2}}{2\ {^2\negthinspace\log5}+{^2\negthinspace\log2}}\\
&=\boxed{\boxed{\dfrac{m+2n+1}{2m+1}}}
\end{aligned}
Jadi, {^{50}\negthinspace\log90}=\dfrac{m+2n+1}{2m+1} .
No.
Nilai dari- 3
- −9
\dfrac{11}2
-\dfrac{11}3 - −11
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{{^3\negthinspace\log36}\cdot{^6\negthinspace\log81}-{^4\negthinspace\log32}}{^{\frac19}\negthinspace\log27}&=\dfrac{{^3\negthinspace\log6^2}\cdot{^6\negthinspace\log81}-{^{2^2}\negthinspace\log2^5}}{^{\frac1{3^2}}\negthinspace\log3^3}\\
&=\dfrac{2\ {^3\negthinspace\log6}\cdot{^6\negthinspace\log81}-\dfrac52}{^{3^{-2}}\negthinspace\log3^3}\\
&=\dfrac{2\ {^3\negthinspace\log81}-\dfrac52}{-\dfrac32}\\
&=\dfrac{2(4)-\dfrac52}{-\dfrac32}\\
&=\dfrac{8-\dfrac52}{-\dfrac32}\\
&=\dfrac{\dfrac{11}2}{-\dfrac32}\\
&=\boxed{\boxed{-\dfrac{11}3}}
\end{aligned}
Jadi, \dfrac{{^3\negthinspace\log36}\cdot{^6\negthinspace\log81}-{^4\negthinspace\log32}}{^{\frac19}\negthinspace\log27}=-\dfrac{11}3 .
JAWAB: D
JAWAB: D
No.
Hasil dari- 144
- 155
- 166
- 177
- 188
ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(^{c^{\frac72}}\negthinspace\log b^{14}\right)\cdot\left(^{a^{\frac53}}\negthinspace\log c^{10}\right)\cdot\left(^{b^{\frac32}}\negthinspace\log a^9\right)&=\left(\dfrac27\cdot14\cdot{^c\negthinspace\log b}\right)\cdot\left(\dfrac35\cdot10\cdot{^a\negthinspace\log c}\right)\cdot\left(\dfrac23\cdot9\cdot{^b\negthinspace\log a}\right)\\
&=\left(4\cdot{^c\negthinspace\log b}\right)\cdot\left(6\cdot{^a\negthinspace\log c}\right)\cdot\left(6\cdot{^b\negthinspace\log a}\right)\\
&=144\cdot{^c\negthinspace\log b}\cdot{^a\negthinspace\log c}\cdot{^b\negthinspace\log a}\\
&=144\cdot{^a\negthinspace\log c}\cdot{^c\negthinspace\log b}\cdot{^b\negthinspace\log a}\\
&=\boxed{\boxed{144}}
\end{aligned}
Jadi, {\left(^{c^{\frac72}}\negthinspace\log b^{14}\right)\cdot\left(^{a^{\frac53}}\negthinspace\log c^{10}\right)\cdot\left(^{b^{\frac32}}\negthinspace\log a^9\right)}=144 .
JAWAB: A
JAWAB: A
No.
Hitunglah nilai dari:- 2log 16
- 2log 64 − 3log 9 − 5log 25
- 2log 5 ⋅ 5log 6 ⋅ 6log 8
ALTERNATIF PENYELESAIAN
\begin{aligned} {^2\negthinspace\log16} &={^2\negthinspace\log2^4} \\ &=\boxed{\boxed{4}} \end{aligned}
\begin{aligned} {^2\negthinspace\log64}-{^3\negthinspace\log9}-{^5\negthinspace\log25}&={^2\negthinspace\log2^6}-{^3\negthinspace\log3^2}-{^5\negthinspace\log5^2}\\ &=6-2-2\\ &=\boxed{\boxed{2}} \end{aligned}
\begin{aligned} {^2\negthinspace\log5}\cdot{^5\negthinspace\log6}\cdot{^6\negthinspace\log8}&={^2\negthinspace\log8}\\ &={^2\negthinspace\log}2^3\\ &=\boxed{\boxed{3}} \end{aligned}
Jadi,
- 2log 16 = 4
- 2log 64 − 3log 9 − 5log 25 = 2
- 2log 5 ⋅ 5log 6 ⋅ 6log 8 = 3
Post a Comment