Exercise Zone : Vektor
Table of Contents

Tipe:
No.
DiketahuiALTERNATIF PENYELESAIAN
\begin{aligned}
\overline{AB}&=\begin{pmatrix}2\\-1\\1\end{pmatrix}-\begin{pmatrix}a\\-2\\3\end{pmatrix}\\
&=\begin{pmatrix}2-a\\1\\-2\end{pmatrix}
\end{aligned}
\begin{aligned}
\overline{BC}&=\begin{pmatrix}1\\5\\c\end{pmatrix}-\begin{pmatrix}2\\-1\\1\end{pmatrix}\\
&=\begin{pmatrix}-1\\6\\c-1\end{pmatrix}
\end{aligned}
\overline{AB} tegak lurus pada \overline{BC} maka
\begin{aligned}
\overline{AB}\cdot\overline{BC}&=0\\
\begin{pmatrix}2-a\\1\\-2\end{pmatrix}\cdot\begin{pmatrix}-1\\6\\c-1\end{pmatrix}&=0\\
(2-a)(-1)+(1)(6)+(-2)(c-1)&=0\\
-2+a+6-2c+2&=0\\
a-2c&=\boxed{\boxed{-6}}
\end{aligned}
Jadi, nilai a − 2c sama dengan −6.
No.
(−15, 30, 5) (−13, 10, 5) (13, 2, 11)
(−13, 2, 1) (−9, 6, 3)
ALTERNATIF PENYELESAIAN
\begin{aligned}
5\overrightarrow{P_1P_2}&=5\left(\begin{pmatrix}2\\4\\2\end{pmatrix}-\begin{pmatrix}5\\-2\\1\end{pmatrix}\right)\\
&=5\begin{pmatrix}-3\\6\\1\end{pmatrix}\\
&=\begin{pmatrix}-15\\30\\5\end{pmatrix}\\
&=\boxed{\boxed{(-15,30,5)}}
\end{aligned}
Jadi, 5\overrightarrow{P_1P_2}=(-15,30,5) .
JAWAB: A
JAWAB: A
No.
Diketahui vektor\dfrac25 \dfrac12 \dfrac35
\dfrac23 \dfrac34
ALTERNATIF PENYELESAIAN
CARA BIASA
\begin{aligned} \left|\vec{c}-\vec{a}\right|&=10\\ \sqrt{(p-4)^2+(0-6)^2}&=10\\ \sqrt{p^2-8p+16+36}&=10\\ \sqrt{p^2-8p+52}&=10\\ p^2-8p+52&=100\\ p^2-8p-48&=0\\ (p+4)(p-12)&=0 \end{aligned}Untuk p = −4
Untuk p = 12
CARA CEPAT
\begin{aligned} \cos(\vec{b},\vec{c})&=\dfrac{\vec{b}\cdot\vec{c}}{\left|\vec{b}\right|\left|\vec{c}\right|}\\ &=\dfrac{(3)(p)+(4)(0)}{\sqrt{3^2+4^2}\sqrt{p^2+0^2}}\\ &=\dfrac{3p+0}{\sqrt{9+16}\sqrt{p^2+0}}\\ &=\dfrac{3p}{\sqrt{25}\sqrt{p^2}}\\ &=\dfrac{3p}{\sqrt{25}|p|}\\ &=\boxed{\boxed{\pm\dfrac35}} \end{aligned}Jadi, cosinus sudut antara vector \vec{b} dan \vec{c} yang mungkin adalah \dfrac35 .
JAWAB: C
JAWAB: C
No.
DiketahuiALTERNATIF PENYELESAIAN
\begin{aligned}
\left|\vec{a}+\vec{b}\right|^2+\left|\vec{a}-\vec{b}\right|^2&=\left|\vec{a}\right|^2+\left|\vec{b}\right|^2\\
6^2+\left|\vec{a}-\vec{b}\right|^2&=4^2+5^2\\
36+\left|\vec{a}-\vec{b}\right|^2&=16+25\\
\left|\vec{a}-\vec{b}\right|^2&=5\\
\left|\vec{a}-\vec{b}\right|&=\boxed{\boxed{\sqrt5}}
\end{aligned}
Jadi, \left|\vec{a}-\vec{b}\right|=\sqrt5 .
No.
Diketahui \(\overrightarrow{PQ}=\pmatrix{1\\0}\) dan \(\overrightarrow{PR}=\pmatrix{2\\2}\). JikaALTERNATIF PENYELESAIAN
CARA 1
\begin{aligned} \overrightarrow{PR}&=\pmatrix{2\\2}\\ \vec{r}-\vec{p}&=\pmatrix{2\\2}\\ \vec{p}-\vec{r}&=\pmatrix{-2\\-2} \end{aligned} \begin{aligned} \overrightarrow{PS}&=\dfrac14\overrightarrow{PQ}\\ \vec{s}-\vec{p}&=\dfrac14\pmatrix{1\\0}\\ &=\pmatrix{\dfrac14\\0} \end{aligned} \begin{aligned} \overrightarrow{RS}&=\vec{s}-\vec{r}\\ &=\vec{s}-\vec{p}+\vec{p}-\vec{r}\\ &=\pmatrix{\dfrac14\\0}+\pmatrix{-2\\-2}\\ &=\boxed{\boxed{\pmatrix{-\dfrac74\\-2}}} \end{aligned}CARA 2
\begin{aligned} \overrightarrow{PS}&=\dfrac14\overrightarrow{PQ}\\ \overrightarrow{PR}+\overrightarrow{RS}&=\dfrac14\pmatrix{1\\0}\\ \pmatrix{2\\2}+\overrightarrow{RS}&=\pmatrix{\dfrac14\\0}\\ \overrightarrow{RS}&=\pmatrix{\dfrac14\\0}-\pmatrix{2\\2}\\ &=\boxed{\boxed{\pmatrix{-\dfrac74\\-2}}} \end{aligned}Jadi, \(\overrightarrow{RS}=\pmatrix{-\dfrac74\\-2}\).
No.
Diberikan- 3 satuan
- 4 satuan
- 5 satuan
- 8 satuan
- 10 satuan
ALTERNATIF PENYELESAIAN
\begin{aligned}
\vec{a}\cdot\vec{b}&=(2)(3)+(3)(-3)+(-2)(-4)\\
&=6-9+8\\
&=\boxed{\boxed{5}}
\end{aligned}
Jadi, \vec{a}\cdot\vec{b}=5 satuan.
JAWAB: c
JAWAB: c
No.
Jika vektor\dfrac67i+\dfrac27j+\dfrac37k \dfrac27i+\dfrac37j-\dfrac67k \dfrac67i-\dfrac37j+\dfrac67k
\dfrac67i-\dfrac37j-\dfrac27k -\dfrac27i+\dfrac67j-\dfrac37k
ALTERNATIF PENYELESAIAN
\begin{aligned}
c&=a-b\\
&=\left(10i+6j-3k\right)-\left(8i+3j+3k\right)\\
&=10i+6j-3k-8i-3j-3k\\
&=2i+3j-6k
\end{aligned}
\begin{aligned}
|c|&=\sqrt{2^2+3^2+(-6)^2}\\
&=\sqrt{4+9+36}\\
&=\sqrt{49}\\
&=7
\end{aligned}
\begin{aligned}
e_c&=\dfrac{c}{|c|}\\
&=\dfrac{2i+3j-6k}7\\
&=\boxed{\boxed{\dfrac27i+\dfrac37j-\dfrac67k}}
\end{aligned}
Jadi, vektor satuan yang searah dengan c adalah \dfrac27i+\dfrac37j-\dfrac67k .
JAWAB: v
JAWAB: v
No.
Tentukan panjang vektorALTERNATIF PENYELESAIAN
\begin{aligned}
|p|&=\sqrt{3^2+5^2+(-4)^2}\\
&=\sqrt{9+25+16}\\
&=\sqrt{50}\\
&=\boxed{\boxed{5\sqrt2}}
\end{aligned}
Jadi, panjang vektor p = (3, 5, −4) adalah 5\sqrt2 .
No.
Diketahui vektorALTERNATIF PENYELESAIAN
\begin{aligned}
\vec{u}+\vec{v}&=3\vec{w}\\
\pmatrix{x\\3\\-4}+\pmatrix{4\\6\\y}&=3\pmatrix{x\\3\\-4}\\
\pmatrix{x+4\\9\\y-4}&=\pmatrix{3x\\9\\-12}
\end{aligned}
\begin{aligned}
x+4&=3x\\
4&=2x\\
x&=\boxed{\boxed{2}}
\end{aligned}
\begin{aligned}
y-4&=-12\\
y&=\boxed{\boxed{-8}}
\end{aligned}
Jadi, x = 2 dan y = −8.
No.
Diberikan tiga titik A, B, C dengan koordinat- \(\left(\dfrac{11}5,\ \dfrac95,\ \dfrac{-6}5\right)\)
- \(\left(\dfrac{11}5,\ \dfrac95,\ \dfrac{6}5\right)\)
- \(\left(\dfrac65,\ \dfrac15,\ \dfrac{-14}5\right)\)
- \(\left(\dfrac{12}5,\ \dfrac{11}5,\ \dfrac{-6}5\right)\)
- \(\left(\dfrac{6}5,\ \dfrac{11}5,\ \dfrac{-9}5\right)\)
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\vec{d}&=\dfrac{2\begin{pmatrix}5\\2\\10\end{pmatrix}+3\begin{pmatrix}7\\10\\18\end{pmatrix}}{2+3}\\[4pt]
&=\dfrac{\begin{pmatrix}10\\4\\20\end{pmatrix}+\begin{pmatrix}21\\30\\54\end{pmatrix}}5\\[4pt]
&=\dfrac{\begin{pmatrix}31\\34\\74\end{pmatrix}}5\\[4pt]
&=\begin{pmatrix}\dfrac{31}5\\\dfrac{34}5\\\dfrac{74}5\end{pmatrix}
\end{aligned}\)
Jadi, koordinat titik D yang tepat adalah \(\left(\dfrac{31}5,\ \dfrac{34}5,\ \dfrac{74}5\right)\).
JAWAB: TIDAK ADA
JAWAB: TIDAK ADA
Post a Comment