HOTS Zone : Turunan (Derivative)
Table of Contents

Tipe:
No.
Diketahui2(2x + 1) 2(2x + 1)2 4(2x + 1)3
8(2x + 1)3 4(2x + 1)2
ALTERNATIF PENYELESAIAN
\begin{aligned}
f(x)&=(2x+1)^2\\
f^2(x)&=\left((2x+1)^2\right)^2\\
&=(2x+1)^4\\
\left(f^2(x)\right)'&=4(2x+1)^3\cdot2\\
&=\boxed{\boxed{8(2x+1)^3}}
\end{aligned}
Jadi, turunan pertama dari f2(x) adalah 8(2x + 1)3 .
JAWAB: D
JAWAB: D
No.
Sebuah persegi dengan sisi x memiliki luas- 36
- 12
- 10
- 8
- 6
ALTERNATIF PENYELESAIAN
\begin{aligned}
L&=x^2\\
f(x)&=x^2\\
f'(x)&=2x\\
f'(6)&=2(6)\\
&=\boxed{\boxed{12}}
\end{aligned}
Jadi, f'(6) = 12 .
JAWAB: B
JAWAB: B
No.
Nilai dari- 2
- 4
- 5
- 10
- 12
ALTERNATIF PENYELESAIAN
\begin{aligned}
f(x)&=\dfrac4{x-3}-\dfrac6x\\
&=4(x-3)^{-1}-6x^{-1}\\
f'(x)&=-4(x-3)^{-2}+6x^{-2}\\
&=-\dfrac4{(x-3)^2}+\dfrac6{x^2}\\
f'(1)&=-\dfrac4{(1-3)^2}+\dfrac6{1^2}\\
&=-\dfrac4{(-2)^2}+\dfrac61\\
&=-\dfrac44+6\\
&=-1+6\\
&=\boxed{\boxed{5}}
\end{aligned}
Jadi, f'(1) = 5 .
JAWAB: C
JAWAB: C
No.
-
\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\cdots}}} -
\dfrac{\cos x}{\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots}}}} -
\dfrac{\cos x}{2\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots}}}} -
\dfrac{\cos x}{2\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots}}}-1} -
\dfrac{\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\cdots}}}}{\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots}}}}
ALTERNATIF PENYELESAIAN
\begin{aligned}
y&=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots}}}\\
y&=\sqrt{\sin x+y}\\
y^2&=\sin x+y\\
y^2-y&=\sin x\\
d\left(y^2-y\right)&=d\left(\sin x\right)\\
(2y-1)\ dy&=\cos x\ dx\\
\dfrac{dy}{dx}&=\dfrac{\cos x}{2y-1}\\
&=\boxed{\boxed{\dfrac{\cos x}{2\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots}}}-1}}}
\end{aligned}
Jadi, \dfrac{dy}{dx}=\dfrac{\cos x}{2\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots}}}-1} .
JAWAB: D
JAWAB: D
No.
Diketahui $f(x)=x+\dfrac1{2x+\dfrac1{2x+\dfrac1{2x+\cdots}}}$. Hitung nilai dari $f(99)\cdot f'(99)$ALTERNATIF PENYELESAIAN
\(\begin{aligned}
f(x)&=x+\dfrac1{2x+\dfrac1{2x+\dfrac1{2x+\cdots}}}\\
&=x+\dfrac1{x+f(x)}\\[4pt]
f(x)-x&=\dfrac1{f(x)+x}\\[4pt]
f^2(x)-x^2&=1\\
f^2(x)&=x^2+1\\
2f(x)\cdot f'(x)&=2x\\
f(x)\cdot f'(x)&=x\\
f(99)\cdot f'(99)&=\color{blue}\boxed{\boxed{\color{black}99}}
\end{aligned}\)
Jadi, $f(99)\cdot f'(99)=99$.
Post a Comment