SNBT Zone : Fungsi [2]
Table of Contents

Tipe:
No.
Diberikan fungsi f memenuhi persamaan 3f(−x) + f(x − 3) = x + 1 untuk setiap bilangan real x. Nilai 4f(−3) adalah- 10
- 11
\dfrac{11}2
- 12
\dfrac{13}2
ALTERNATIF PENYELESAIAN
Untuk x = 3,
\begin{aligned} 3f(-3) + f(3-3)& = 3 + 1\\ 3f(-3) + f(0)& = 4&\times3\\ 9f(-3)+3f(0)&=12 \end{aligned}Untuk x = 0,
\begin{aligned} 3f(-0) + f(0-3)& = 0 + 1\\ 3f(0) + f(-3)& = 1\\ f(-3)+3f(0)&=1 \end{aligned}
\begin{aligned}
9f(-3)+3f(0)&=12\\
f(-3)+3f(0)&=1&-\\\hline
8f(-3)&=11&:2\\
4f(-3)&=\boxed{\boxed{\dfrac{11}2}}
\end{aligned}
Jadi, 4 f(-3)=\dfrac{11}2 .
JAWAB: C
JAWAB: C
No.
Misalkan f adalah fungsi yang memenuhi:ALTERNATIF PENYELESAIAN
Untuk x=\dfrac13
\begin{aligned}
f\left(\dfrac1{\dfrac13}\right)+\dfrac1{\dfrac13}\ f\left(-\dfrac13\right)&=2\left(\dfrac13\right)\\
f(3)+3f\left(-\dfrac13\right)&=\dfrac23
\end{aligned}
Untuk x = −3
\begin{aligned} f\left(\dfrac1{-3}\right)+\dfrac1{-3}\ f(-(-3))=2(-3)\\ f\left(-\dfrac13\right)-\dfrac13f(3)&=-6&\times3\\ 3f\left(-\dfrac13\right)-f(3)&=-18 \end{aligned} \begin{aligned}
f(3)+3f\left(-\dfrac13\right)&=\dfrac23\\
3f\left(-\dfrac13\right)-f(3)&=-18&-\\\hline
2f(3)&=\dfrac{56}3\\
f(3)&=\boxed{\boxed{\dfrac{28}3}}
\end{aligned}
Jadi, f(3)=\dfrac{28}3 .
Post a Comment