SNBT Zone : Fungsi Komposisi
Table of Contents

Tipe:
No.
Jika \((f\circ g)(x)=\dfrac{6x+3}{2x-5}\) dan- 72 ln 2 − 3
- 36 ln 3 − 2
- 36 ln 2 − 6
- 36 ln 2 − 3
- 72 ln 3 − 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
(f\circ g)(x)&=\dfrac{6x+3}{2x-5}\\[3.5pt]
f(g(x))&=\dfrac{12x+6}{4x-10}\\[3.5pt]
f(4x-11)&=\dfrac{3(4x-11)+39}{4x-11+1}\\[3.5pt]
f(x)&=\dfrac{3x+39}{x+1}\\[3.5pt]
f^{-1}(x)&=\dfrac{-x+39}{x-3}\\[3.5pt]
f^{-1}(x-1)&=\dfrac{-(x-1)+39}{x-1-3}\\[3.5pt]
&=\dfrac{-x+1+39}{x-4}\\[3.5pt]
&=\dfrac{-x+40}{x-4}
\end{aligned}\)
\(\begin{aligned} \displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\ &=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\ &=\left[-x+36\ln|x-4|\right]_5^8\\ &=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\ &=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\ &=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\ &=\left[-8+72\ln2\right]-\left[-5\right]\\ &=-8+72\ln2+5\\ &=\boxed{\boxed{72\ln2-3}} \end{aligned}\)
\(\begin{aligned} \displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\ &=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\ &=\left[-x+36\ln|x-4|\right]_5^8\\ &=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\ &=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\ &=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\ &=\left[-8+72\ln2\right]-\left[-5\right]\\ &=-8+72\ln2+5\\ &=\boxed{\boxed{72\ln2-3}} \end{aligned}\)
Jadi, \(\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx=72\ln2-3\).
JAWAB: A
JAWAB: A
No.
Jika tabel berikut menyatakan hasil fungsi f dan gx | 0 | 1 | 2 | 3 |
f(x) | 1 | 3 | 1 | −1 |
g(x) | 2 | 0 | 1 | 2 |
- 4
- 3
- 2
- 1
- 0
ALTERNATIF PENYELESAIAN
\begin{aligned}
(f\circ g\circ f)(0)+(g\circ f\circ g)(1)&=f(g(f(0)))+g(f(g(1)))\\
&=f(g(1))+g(f(0))\\
&=f(0)+g(1)\\
&=1+0\\
&=\boxed{\boxed{1}}
\end{aligned}
Jadi, (f ∘ g ∘ f)(0) + (g ∘ f ∘ g)(1) =1 .
JAWAB: D
JAWAB: D
No.
Diketahui fungsi- 10
- 9
- 8
- 7
- 6
ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(g\circ f\right)(x) &= x + \dfrac6a\\
g\left(f(x)\right)&=\dfrac{ax}a+ \dfrac6a\\
g\left(ax + 6\right)&=\dfrac{ax+6}a\\
g(x)&=\dfrac{x}a\\
6(6a)&=\dfrac{6a}a\\
&=\boxed{\boxed{6}}
\end{aligned}
Jadi, g(6a) = 6.
JAWAB: E
JAWAB: E
Post a Comment