SNBT Zone : Fungsi
Table of Contents

Tipe:
No.
Diberikan fungsi f memenuhi persamaan 2f(x + 2) + f(−x) = x − 3 untuk setiap bilangan bulat x. Nilai f(2) adalah ....\dfrac13 -\dfrac13 - −3
- 3
- −2
ALTERNATIF PENYELESAIAN
Untuk x = 0,
\begin{aligned}
2f(0+2)+f(-0)&=0-3\\
2f(2)+f(0)&=-3\\
4f(2)+2f(0)&=-6
\end{aligned}
Untuk x = −2,
\begin{aligned}
2f(-2+2)+f(-(-2))&=-2-3\\
2f(0)+f(2)&=-5\\
f(2)+2f(0)&=-5
\end{aligned}
\begin{aligned}
4f(2)+2f(0)&=-6\\
f(2)+2f(0)&=-5\qquad-\\\hline
3f(2)&=-1\\
f(2)&=\boxed{\boxed{-\dfrac13}}
\end{aligned}
Jadi, f(2)=-\dfrac13 .
JAWAB: B
JAWAB: B
No.
f(x2 + 3ax + 1) = 2x − 1 dan f(5) = 3. Hitung nilai aALTERNATIF PENYELESAIAN
\begin{aligned}
2x-1&=3\\
2x&=4\\
x&=2
\end{aligned}
\begin{aligned}
x^2+3ax+1&=5\\
2^2+3a(2)+1&=5\\
4+6a+1&=5\\
6a+5&=5\\
6a&=0\\
a&=0
\end{aligned}
Jadi, a = 0.
No.
Jika f(x) = 3h(x) + 4;-\dfrac{797449}{81} \dfrac{797449}{81} -\dfrac{893}9
\dfrac{893749}9 \dfrac{893749}{81}
ALTERNATIF PENYELESAIAN
\begin{aligned}
2f(3)\cdot g(2)-f^2(3)-g^2(2)&=-\left(f(3)-g(2)\right)^2\\
&=-\left(3h(3)+4-\dfrac{\sqrt{f(2)}}9\right)^2\\
&=-\left(3\left(3(3)^2+2(3)-1\right)+4-\dfrac{\sqrt{3h(2)+4}}9\right)^2\\
&=-\left(3\left(27+6-1\right)+4-\dfrac{\sqrt{3\left(3(2)^2+2(2)-1\right)+4}}9\right)^2\\
&=-\left(3\left(32\right)+4-\dfrac{\sqrt{3\left(12+4-1\right)+4}}9\right)^2\\
&=-\left(96+4-\dfrac{\sqrt{3\left(15\right)+4}}9\right)^2\\
&=-\left(100-\dfrac{\sqrt{45+4}}9\right)^2\\
&=-\left(100-\dfrac{\sqrt{49}}9\right)^2\\
&=-\left(100-\dfrac79\right)^2\\
&=-\left(\dfrac{893}9\right)^2\\
&=-\dfrac{797449}{81}
\end{aligned}
Jadi, 2f(3)\cdot g(2)-f^2(3)-g^2(2)=-\dfrac{797449}{81} .
JAWAB: A
JAWAB: A
No.
Jika f(x) = ax, maka untuk setiap x dan y berlaku- f(x)f(y) = f(xy)
- f(x)f(y) = f(x + y)
- f(x)f(y) = f(x) + f(y)
- f(x) + f(y) = f(x)f(y)
- f(x) + f(y) = f(x + y)
ALTERNATIF PENYELESAIAN
\begin{aligned}
f(x)f(y)&=a^xa^y\\
&=a^{x+y}\\
&=f(x+y)
\end{aligned}
Jadi, berlaku f(x)f(y) = f(x + y).
JAWAB: B
JAWAB: B
No.
Bila f(x) memenuhi 2f(x) + f(1 − x) = x2 untuk semua nilai real x, maka f(x) sama dengan\dfrac12x^2-\dfrac32x+\dfrac12 \dfrac19x^2+\dfrac89x-\dfrac13 \dfrac23x^2+\dfrac12x-\dfrac13
\dfrac13x^2+\dfrac23x-\dfrac13 \dfrac19x^2+x-\dfrac49
ALTERNATIF PENYELESAIAN
\begin{aligned}
2f(1-x)+f(1-(1-x))&=(1-x)^2\\
2f(1-x)+f(1-1+x)&=1-2x+x^2\\
2f(1-x)+f(x)&=x^2-2x+1\\
f(x)+2f(1-x)&=x^2-2x+1
\end{aligned}
\begin{aligned}
2f(x)+f(1-x)&=x^2\qquad&\color{red}{\times 2}\\
f(x)+2f(1-x)&=x^2-2x+1
\end{aligned}
\begin{aligned}
4f(x)+2f(1-x)&=2x^2\\
f(x)+2f(1-x)&=x^2-2x+1&\color{red}{-}\\\hline
3f(x)&=x^2+2x-1\\
f(x)&=\dfrac13x^2+\dfrac23x-\dfrac13
\end{aligned}
Jadi, f(x)=\dfrac13x^2+\dfrac23x-\dfrac13 .
JAWAB: D
JAWAB: D
No.
Jika- 72 ln 2 − 3
- 36 ln 3 − 2
- 36 ln 2 − 6
- 36 ln 2 − 3
- 72 ln 3 − 2
ALTERNATIF PENYELESAIAN
\begin{aligned}
(f\circ g)(x)&=\dfrac{6x+3}{2x-5}\\[3.5pt]
f(g(x))&=\dfrac{12x+6}{4x-10}\\[3.5pt]
f(4x-11)&=\dfrac{3(4x-11)+39}{4x-11+1}\\[3.5pt]
f(x)&=\dfrac{3x+39}{x+1}\\[3.5pt]
f^{-1}(x)&=\dfrac{-x+39}{x-3}\\[3.5pt]
f^{-1}(x-1)&=\dfrac{-(x-1)+39}{x-1-3}\\[3.5pt]
&=\dfrac{-x+1+39}{x-4}\\[3.5pt]
&=\dfrac{-x+40}{x-4}
\end{aligned}
\begin{aligned}
\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\
&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\
&=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\
&=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\
&=\left[-x+36\ln|x-4|\right]_5^8\\
&=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\
&=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\
&=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\
&=\left[-8+72\ln2\right]-\left[-5\right]\\
&=-8+72\ln2+5\\
&=\boxed{\boxed{72\ln2-3}}
\end{aligned}
Jadi, \displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx=72\ln2-3 .
JAWAB: A
JAWAB: A
No.
Jika- 4
- 2
\dfrac12
\dfrac52 \dfrac32
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac2{\sqrt{2x-1}}&=1\\
\sqrt{2x-1}&=2\\
2x-1&=4\\
2x&=5\\
x&=\dfrac52
\end{aligned}
f(1)=\boxed{\boxed{\dfrac52}}
Jadi, f(1)=\dfrac52 .
JAWAB: D
JAWAB: D
No.
Fungsi f terdefinisi pada bilangan real kecuali 2 sehingga- -2
- 8
- 13
- 18
ALTERNATIF PENYELESAIAN
CARA 1
MisalCARA 2
\begin{aligned} \dfrac{2x}{x-5}&=3\\ 2x&=3x-15\\ -x&=-15\\ x&=15 \end{aligned} \begin{aligned} f(3)&=2(15)-1\\ &=29 \end{aligned} \begin{aligned} \dfrac{2x}{x-5}&=1\\ 2x&=x-5\\ x&=-5 \end{aligned} \begin{aligned} f(1)&=2(-5)-1\\ &=-11 \end{aligned} \begin{aligned} f(3)+f(1)&=29+(-11)\\ &=\boxed{\boxed{18}} \end{aligned}Jadi, f(3) + f(1) = 18.
JAWAB: D
JAWAB: D
No.
Diberikan fungsi f memenuhi persamaan 2f(−x) + f(x + 3) = x + 5 untuk setiap bilangan real x. Nilai 3f(1) adalah- 5
- 3
- 4
- 2
- 0
ALTERNATIF PENYELESAIAN
Untuk x = −1,
\begin{aligned}
2f(-(-1))+f(-1+3)&=-1+5\\
2f(1)+f(2)&=4\\
4f(1)+2f(2)&=8
\end{aligned}
Untuk x = −2,
\begin{aligned}
2f(-(-2))+f(-2+3)&=-2+5\\
2f(2)+f(1)&=3\\
f(1)+2f(2)&=3
\end{aligned}
\begin{aligned}
4f(1)+2f(2)&=8\\
f(1)+2f(2)&=3&-\\\hline
3f(1)&=5
\end{aligned}
Jadi, 3f(1) = 5.
JAWAB: A
JAWAB: A
No.
Jika fungsi f(x2 + 3x + 5) = 3log(20x2 + 3x + 4), dengan x ≥ 0, maka nilai f(9) =- 3
- 4
- 5
- 6
- 7
ALTERNATIF PENYELESAIAN
\begin{aligned}
x^2 + 3x + 5&=9\\
x^2+3x-4&=0\\
(x+4)(x-1)&=0
\end{aligned}
x = −4 (TM) atau x = 1
\begin{aligned}
f(9)&={^3\log}\left(20(1)^2 + 3(1) + 4\right)\\
&={^3\log}\left(27\right)\\
&=\boxed{\boxed{3}}
\end{aligned}
Jadi, f(9) = 3.
JAWAB: A
JAWAB: A
Post a Comment