SNBT Zone : Vektor
Table of Contents

Tipe:
No. 1
Diketahui vektor\sqrt6 2\sqrt6 - 2
2\sqrt3 \sqrt3
ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(\vec{a}+\vec{b}\right)\left(\vec{a}-\vec{b}\right)&=0\\
\vec{a}^2-\vec{b}^2&=0\\
\vec{a}^2&=\vec{b}^2\\
\left|\vec{a}\right|^2&=\left|\vec{b}\right|^2\\
\left|\vec{a}\right|&=\left|\vec{b}\right|\\
\left|\vec{b}\right|&=\sqrt5
\end{aligned}
\begin{aligned}
\vec{a}\left(\vec{a}-\vec{b}\right)&=4\\
\vec{a}^2-\vec{a}\cdot\vec{b}&=4\\
\left|\vec{a}\right|^2-\left|\vec{a}\right|\left|\vec{b}\right|\cos\alpha&=4\\
\left(\sqrt5\right)^2-\left(\sqrt5\right)\left(\sqrt5\right)\cos\alpha&=4\\
5-5\cos\alpha&=4\\
\cos\alpha&=\dfrac15
\end{aligned}
\begin{aligned}
de&=\sqrt{5^2-1^2}\\
&=\sqrt{24}\\
&=2\sqrt6
\end{aligned}
\begin{aligned}
\tan\alpha&=\dfrac{2\sqrt6}1\\
&=\boxed{\boxed{2\sqrt6}}
\end{aligned}
Jadi, \tan\alpha=2\sqrt6 .
JAWAB: B
JAWAB: B
Post a Comment