Exercise Zone : Pangkat (Eksponen)
Table of Contents

Tipe:
No.
Hitunglah hasil perpangkatan berikut $$\left(\dfrac{27}{125}\right)^{\frac13}\left(\dfrac19\right)^{-2}$$ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(\dfrac{27}{125}\right)^{\frac13}\left(\dfrac19\right)^{-2}&=\left(\dfrac{3^3}{5^3}\right)^{\frac13}\left(\dfrac1{3^2}\right)^{-2}\\[4pt]
&=\dfrac{\left(3^3\right)^{\frac13}}{\left(5^3\right)^{\frac13}}\left(3^{-2}\right)^{-2}\\[4pt]
&=\dfrac35\left(3^4\right)\\[4pt]
&=\dfrac35\left(81\right)\\
&=\boxed{\boxed{\dfrac{243}5}}
\end{aligned}
Jadi, \left(\dfrac{27}{125}\right)^{\frac13}\left(\dfrac19\right)^{-2}=\dfrac{243}5 .
No.
Diketahui a, b, dan c adalah bilangan real positif, jika- a11b12
- a12b11
- a14b13
- a13b12
- a12b13
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{\sqrt{bc}}{\sqrt[5]{ab^4}}&= ab\\
\left(\dfrac{\sqrt{bc}}{\sqrt[5]{ab^4}}\right)^{10}&=(ab)^{10}\\
\dfrac{(bc)^5}{\left(ab^4\right)^2}&=a^{10}b^{10}\\
\dfrac{b^5c^5}{a^2b^8}&=a^{10}b^{10}\\
c^5&=\dfrac{a^2b^8\cdot a^{10}b^{10}}{b^5}\\
&=\boxed{\boxed{a^{12}b^{13}}}
\end{aligned}
Jadi, c5 = a12b13.
JAWAB: E
JAWAB: E
No.
- −1
- 0
\dfrac12
- 1
- Ax + y
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{1}{1+A^{x-y}}+\dfrac{1}{1+A^{y-x}}&=\dfrac{1}{1+\dfrac{A^x}{A^y}}+\dfrac{1}{1+\dfrac{A^y}{A^x}}\\[4pt]
&=\dfrac{1}{\dfrac{A^y+A^x}{A^y}}+\dfrac{1}{\dfrac{A^x+A^y}{A^x}}\\[4pt]
&=\dfrac{A^y}{A^y+A^x}+\dfrac{A^x}{A^x+A^y}\\[4pt]
&=\dfrac{A^y}{A^y+A^x}+\dfrac{A^x}{A^y+A^x}\\[4pt]
&=\dfrac{A^y+A^x}{A^y+A^x}\\
&=\boxed{\boxed{1}}
\end{aligned}
Jadi, \dfrac{1}{1+A^{x-y}}+\dfrac{1}{1+A^{y-x}}=1 .
JAWAB: D
JAWAB: D
No.
Bentuk sederhana dari\dfrac{p^6}{q^5r^4} \dfrac{p^6}{q^6r^2} \dfrac{p^3}{q^5r^2}
\dfrac{q^6}{p^6r^4} \dfrac{q^5p^6}{r^2}
ALTERNATIF PENYELESAIAN
\begin{aligned}
\left(\dfrac{p^{-2}q^2r}{pq^{-1}r^3}\right)^2&=\left(\dfrac{q^{2-(-1)}}{p^{1-(-2)}r^{3-1}}\right)^2\\[4pt]
&=\left(\dfrac{q^3}{p^3r^2}\right)^2\\[4pt]
&=\boxed{\boxed{\dfrac{q^6}{p^6r^4}}}
\end{aligned}
Jadi, \left(\dfrac{p^{-2}q^2r}{pq^{-1}r^3}\right)^2=\dfrac{q^6}{p^6r^4} .
JAWAB: D
JAWAB: D
No.
Hasil dari\dfrac{27}2 \dfrac92 \dfrac{27}8
\dfrac98 \dfrac8{27}
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{8^{-\frac35}9^{\frac54}}{81^{-\frac18}64^{\frac15}}&=\dfrac{8^{-\frac35}\left(3^2\right)^{\frac54}}{\left(3^4\right)^{-\frac18}\left(8^2\right)^{\frac15}}\\
&=\dfrac{8^{-\frac35}3^{\frac52}}{3^{-\frac12}8^{\frac25}}\\
&=\dfrac{3^{\frac52+\frac12}}{8^{\frac25+\frac35}}\\
&=\dfrac{3^{\frac62}}{8^{\frac55}}\\
&=\dfrac{3^3}{8^1}\\
&=\boxed{\boxed{\dfrac{27}8}}
\end{aligned}
Jadi, \dfrac{8^{-\frac35}9^{\frac54}}{81^{-\frac18}64^{\frac15}}=\dfrac{27}8 .
JAWAB: C
JAWAB: C
No.
25 × 27 = ....- 28
- 212
- 218
- 225
- 235
ALTERNATIF PENYELESAIAN
\begin{aligned}
2^5\times2^7&=2^{5+7}\\
&=\color{blue}\boxed{\boxed{\color{black}2^{12}}}
\end{aligned}
Jadi, 25 × 27 = 212.
JAWAB: B
JAWAB: B
No.
$\dfrac{3^5}{3^2}=$ ....- 1
- 3
- 9
- 27
- 81
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac{3^5}{3^2}&=3^{5-2}\\
&=3^3\\
&=\color{blue}\boxed{\boxed{\color{black}27}}
\end{aligned}\)
Jadi, $\dfrac{3^5}{3^2}=27$.
JAWAB: D
JAWAB: D
No.
Bentuk sederhana dari $\dfrac{7x^3y^{-4}z^{-6}}{84x^{-7}y^{-1}z^{-4}}=$ ....- $\dfrac{x^{10}z^{10}}{12y^3}$
- $\dfrac{z^2}{12x^4y^3}$
- $\dfrac{x^{10}y^5}{12z^2}$
- $\dfrac{y^3z^2}{12x^4}$
- $\dfrac{x^{10}}{12y^3z^2}$
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{7x^3y^{-4}z^{-6}}{84x^{-7}y^{-1}z^{-4}}&=\dfrac{x^{3-(-7)}}{12y^{-1-(-4)}z^{-4-(-6)}}\\
&=\color{blue}\boxed{\boxed{\color{black}\dfrac{x^{10}}{12y^3z^2}}}
\end{aligned}
Jadi, $\dfrac{7x^3y^{-4}z^{-6}}{84x^{-7}y^{-1}z^{-4}}=\dfrac{x^{10}}{12y^3z^2}$.
JAWAB: E
JAWAB: E
No.
Bentuk sederhana dari\dfrac{x}y - x2⋅ y
- x⋅ y
- x⋅ y2
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{x^5\cdot y^7}{x^4\cdot y^8}&=\dfrac{x^{5-4}}{y^{8-7}}\\
&=\boxed{\boxed{\dfrac{x}y}}
\end{aligned}
Jadi, \dfrac{x^5\cdot y^7}{x^4\cdot y^8}=\dfrac{x}y .
JAWAB: A
JAWAB: A
No.
Sederhanakan bentuk dariALTERNATIF PENYELESAIAN
\begin{aligned}
\left(\dfrac{6p^2\cdot q^5\cdot r^3}{p^7\cdot q^4\cdot2r^2}\right)^2&=\left(\dfrac{3q^{5-4}r^{3-2}}{p^{7-2}}\right)^2\\
&=\left(\dfrac{3qr}{p^5}\right)^2\\
&=\boxed{\boxed{\dfrac{6q^2r^2}{p^{10}}}}
\end{aligned}
Jadi, \left(\dfrac{6p^2\cdot q^5\cdot r^3}{p^7\cdot q^4\cdot2r^2}\right)^2=\dfrac{6q^2r^2}{p^{10}} .
Post a Comment