SNBT Zone : Pangkat (Eksponen)
Table of Contents

Tipe:
No.
Jika x1, x2 adalah akar-akar- 2
- 3
- 8
- 9
- 18
ALTERNATIF PENYELESAIAN
\begin{aligned}
3^x-2\cdot3^{\frac12x+1}+p&=0\\
3^x-2\cdot3^{\frac12x}\cdot3+p&=0\\
3^x-6\cdot3^{\frac12x}+p&=0
\end{aligned}
Misal {3^{\frac12x}=y} maka
y^2 − 6y + p = 0
\begin{aligned}
y_1y_2&=p\\
3^{\frac12x_1}3^{\frac12x_2}&=p\\
3^{\frac12x_1+\frac12x_2}&=p\\
3^{\frac12\left(x_1+x_2\right)}&=p\\
3^{\frac12\left(2\cdot{^3\negthinspace\log2}+4\right)}&=p\\
3^{^3\negthinspace\log2+2}&=p\\
3^{^3\negthinspace\log2}\cdot3^2&=p\\
2\cdot9&=p\\
p&=\boxed{\boxed{18}}
\end{aligned}
Jadi, p = 18.
JAWAB: E
JAWAB: E
No.
Jika- 24
- 18
- 12
- 6
- 3
ALTERNATIF PENYELESAIAN
\begin{aligned}
\sqrt[4]{25} +\sqrt[m]{27}&=\dfrac2{\sqrt{8-\sqrt{60}}}\\
\sqrt[4]{5^2} +\sqrt[m]{27}&=\dfrac2{\sqrt{8-2\sqrt{15}}}\\
\sqrt5 +\sqrt[m]{27}&=\dfrac2{\sqrt{5+3-2\sqrt{5\cdot3}}}\\
\sqrt[m]{27}&=\dfrac2{\sqrt5-\sqrt3}\cdot\dfrac{\sqrt5+\sqrt3}{\sqrt5+\sqrt3}-\sqrt5\\
\sqrt[m]{27}&=\dfrac{2\left(\sqrt5+\sqrt3\right)}{5-3}-\sqrt5\\
\sqrt[m]{27}&=\sqrt5+\sqrt3-\sqrt5\\
\sqrt[m]{3^3}&=\sqrt3\\
3^{\frac3m}&=3^{\frac12}\\
\dfrac3m&=\dfrac12\\
m&=6
\end{aligned}
Jadi, nilai dari m adalah 6.
JAWAB: D
JAWAB: D
No.
Diberikan a dan b bilangan real- 0
- 1
- 3
- 4
- 5
ALTERNATIF PENYELESAIAN
\begin{aligned}
ab&=a^b\\
b&=\dfrac{a^b}a\\[3.7pt]
&=a^{b-1}
\end{aligned}
\begin{aligned}
\dfrac{a}b&=a^{3b}\\[3.7pt]
\dfrac{a}{a^{b-1}}&=a^{3b}\\[3.7pt]
a^{1-(b-1)}&=a^{3b}\\
a^{1-b+1}&=a^{3b}\\
a^{2-b}&=a^{3b}\\
2-b&=3b\\
2&=4b\\
b&=\dfrac12
\end{aligned}
\begin{aligned}
ab&=a^b\\
a\left(\dfrac12\right)&=a^{\frac12}\\[3.7pt]
\dfrac12a&=\sqrt{a}\\[3.7pt]
\dfrac14a^2&=a\\[3.7pt]
a^2&=4a\\
a&=4
\end{aligned}
Jadi, nilai a adalah 4.
JAWAB:
JAWAB:
No.
Jika\dfrac{121}{42} \dfrac{120}{41} \dfrac{42}{121}
\dfrac{41}{120} \dfrac{14}{21}
ALTERNATIF PENYELESAIAN
\begin{aligned}
\dfrac{A^{5x}-A^{-5x}}{A^{3x}+A^{-3x}}{\color{red}{\cdot\dfrac{A^{5x}}{A^{5x}}}}&=\dfrac{A^{10x}-A^0}{A^{8x}+A^{2x}}\\[3.7pt]
&=\dfrac{\left(A^{2x}\right)^5-1}{\left(A^{2x}\right)^4+A^{2x}}\\[3.7pt]
&=\dfrac{3^5-1}{3^4+3}\\[3.7pt]
&=\dfrac{243-1}{81+3}\\[3.7pt]
&=\dfrac{242}{84}\\
&=\boxed{\boxed{\dfrac{121}{42}}}
\end{aligned}
Jadi, nilai \dfrac{A^{5x}-A^{-5x}}{A^{3x}+A^{-3x}}=\dfrac{121}{42} .
JAWAB: A
JAWAB: A
No.
Misalkan- 0
- 1
- 2
- 3
- 4
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac{\left(x^7y^5\right)^3}{\left(x^4y^3\right)^5}&=\dfrac{r^3}{s^5}\\[3.7pt]
\dfrac{x^{21}y^{15}}{x^{20}y^{15}}&=r^3s^{-5}\\[3.7pt]
x&=r^3s^{-5}
\end{aligned}\)
a = 3, b = −5
\(\begin{aligned} \dfrac{\left(x^7y^5\right)^4}{\left(x^4y^3\right)^7}&=\dfrac{r^4}{s^7}\\[3.7pt] \dfrac{x^{28}y^{20}}{x^{28}y^{21}}&=\dfrac{r^4}{s^7}\\[3.7pt] \dfrac1y&=\dfrac{r^4}{s^7}\\[3.7pt] y&=\dfrac{s^7}{r^4}\\[3.7pt] &=r^{-4}s^7 \end{aligned}\)
c = −4, d = 7
a + b + c + d = 3 + (−5) + (−4) + 7 = 1
a = 3, b = −5
\(\begin{aligned} \dfrac{\left(x^7y^5\right)^4}{\left(x^4y^3\right)^7}&=\dfrac{r^4}{s^7}\\[3.7pt] \dfrac{x^{28}y^{20}}{x^{28}y^{21}}&=\dfrac{r^4}{s^7}\\[3.7pt] \dfrac1y&=\dfrac{r^4}{s^7}\\[3.7pt] y&=\dfrac{s^7}{r^4}\\[3.7pt] &=r^{-4}s^7 \end{aligned}\)
c = −4, d = 7
Jadi, a + b + c + d = 1 .
JAWAB: B
JAWAB: B
Post a Comment