Exercise Zone : Maksimum dan Minimum
Table of Contents
Tipe:
No.
Total penjualan suatu barang (k) merupakan perkalian antara harga (h) dan permintaan (x) atau ditulis- Rp3.600.000,00
- Rp1.800.000,00
- Rp900.000,00
- Rp600.000,00
- Rp300.000,00
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
k&=hx\\
&=(60-x)x\\
&=60x-x^2
\end{aligned}\)
kmax ⟶ k' = 0
\(\begin{aligned} 60-2x&=0\\ 2x&=60\\ x&=30 \end{aligned}\)
\(\begin{aligned} k_{\max}&=(60-30)30\\ &=900 \end{aligned}\)
CARA 1
\(\begin{aligned} 60-2x&=0\\ 2x&=60\\ x&=30 \end{aligned}\)
\(\begin{aligned} k_{\max}&=(60-30)30\\ &=900 \end{aligned}\)
CARA 2
\(\begin{aligned} (60-x)x&\leq\left(\dfrac{60-x+x}2\right)^2\\ &\leq\left(\dfrac{60}2\right)^2\\ &\leq30^2\\ &\leq900 \end{aligned}\)Jadi, total penjualan maksimum sebesar Rp900.000,00.
JAWAB: C
JAWAB: C
No.
Suatu perusahaan memproduksi x unit barang, dengan biaya- Rp16.000,00
- Rp32.000,00
- Rp48.000,00
- Rp52.000,00
- Rp64.000,00
ALTERNATIF PENYELESAIAN
Misal fungsi keuntungannya adalah f(x)
\(\begin{aligned} f(x)&=40000x-x\left(4x^2-8x+24\right)\cdot1000\\ &=40000x-4000x^3+8000x^2-24000x\\ &=-4000x^3+8000x^2+16000x \end{aligned}\)
Keuntungan maksimum berartif'(x) = 0
\(\begin{aligned} f'(x)&=0\\ -12000x^2+16000x+16000&=0\\ 3x^2-4x-4&=0\\ (3x+2)(x-2)&=0 \end{aligned}\)
\(x=-\dfrac32\) (TM) ataux = 2
\(\begin{aligned} f(x)&=40000x-x\left(4x^2-8x+24\right)\cdot1000\\ &=40000x-4000x^3+8000x^2-24000x\\ &=-4000x^3+8000x^2+16000x \end{aligned}\)
Keuntungan maksimum berarti
\(\begin{aligned} f'(x)&=0\\ -12000x^2+16000x+16000&=0\\ 3x^2-4x-4&=0\\ (3x+2)(x-2)&=0 \end{aligned}\)
\(x=-\dfrac32\) (TM) atau
\(\begin{aligned}
f(2)&=-4000(2)^3+8000(2)^2+16000(2)\\
&=-32000+32000+32000\\
&=\boxed{\boxed{32000}}
\end{aligned}\)
Jadi, keuntungan maksimum yang diperoleh perusahaan tersebut adalah Rp32.000,00.
JAWAB: B
JAWAB: B
Post a Comment