Exercise Zone : Matriks [2]
Table of Contents
Tipe:
No.
Diketahui persamaan matriks \({\begin{pmatrix}3x&3y\\6&18\end{pmatrix}-2\begin{pmatrix}x&6\\-1&y+1\end{pmatrix}=\begin{pmatrix}2&2x-y\\8&8\end{pmatrix}}\). Nilai dari- −2
- 0
- 2
- 4
- 6
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{pmatrix}3x&3y\\6&18\end{pmatrix}-2\begin{pmatrix}x&6\\-1&y+1\end{pmatrix}&=\begin{pmatrix}2&2x-y\\8&8\end{pmatrix}\\
\begin{pmatrix}3x&3y\\6&18\end{pmatrix}-\begin{pmatrix}2x&12\\-2&2y+2\end{pmatrix}&=\begin{pmatrix}2&2x-y\\8&8\end{pmatrix}\\
\begin{pmatrix}x&3y-12\\8&-2y+16\end{pmatrix}&=\begin{pmatrix}2&2x-y\\8&8\end{pmatrix}\\
\end{aligned}\)
x = 2
x = 2
\(\begin{aligned}
-2y+16&=8\\
-2y&=-8\\
y&=\boxed{4}
\end{aligned}\)
\(\begin{aligned} x-y&=2-4\\ &=\boxed{\boxed{-2}} \end{aligned}\)
\(\begin{aligned} x-y&=2-4\\ &=\boxed{\boxed{-2}} \end{aligned}\)
Jadi, x − y = −2.
JAWAB: A
JAWAB: A
No.
Diberikan matriks \({P = \begin{pmatrix}3&-1\\5&2\end{pmatrix}}\) dan \({Q = \begin{pmatrix}3r&2\\r&p+1\end{pmatrix}}\) dengan- 4
- 3
- 2
- 1
- 0
ALTERNATIF PENYELESAIAN
Tidak punya invers artinya det = 0.
\(\begin{aligned} \left|PQ\right|&=0\\ |P||Q|&=0 \end{aligned}\)
Karena|P| ≠ 0 maka
\(\begin{aligned} |Q|&=0\\ 3r(p+1)-2r&=0\\ 3pr+3r-2r&=0\\ 3pr+r&=0\\ r(3p+1)&=0\\ 3p+1&=0\\ 3p+2&=\boxed{\boxed{1}} \end{aligned}\)
\(\begin{aligned} \left|PQ\right|&=0\\ |P||Q|&=0 \end{aligned}\)
Karena
\(\begin{aligned} |Q|&=0\\ 3r(p+1)-2r&=0\\ 3pr+3r-2r&=0\\ 3pr+r&=0\\ r(3p+1)&=0\\ 3p+1&=0\\ 3p+2&=\boxed{\boxed{1}} \end{aligned}\)
Jadi, 3p + 2 = 1.
JAWAB: D
JAWAB: D
No.
Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}5&1\\7&2\end{pmatrix}A=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}}\), maka determinan dari- −2
- $-\dfrac12$
- 0
- $\dfrac12$
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{pmatrix}5&1\\7&2\end{pmatrix}A&=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}\\
\begin{vmatrix}5&1\\7&2\end{vmatrix}|A|&=\begin{vmatrix}3&-2\\-3&1\end{vmatrix}\begin{vmatrix}3&4\\1&2\end{vmatrix}\\
(5\cdot2-1\cdot7)|A|&=(3\cdot1-(-2)\cdot(-3))(3\cdot2-4\cdot1)\\
(10-7)|A|&=(3-6)(6-4)\\
3|A|&=(-3)(2)\\
3|A|&=-6\\
|A|&=-2
\end{aligned}\)
\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\boxed{\boxed{-\dfrac12}} \end{aligned}\)
\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\boxed{\boxed{-\dfrac12}} \end{aligned}\)
Jadi, determinan dari A−1 adalah \(-\dfrac12\).
JAWAB: B
JAWAB: B
No.
Diketahui matriks \({P=\begin{pmatrix}2&-3&6\\5&0&-2\\1&4&-4\end{pmatrix}}\). Nilai- −4
- −2
- −1
- 1
- 11
ALTERNATIF PENYELESAIAN
\(P^T=\begin{pmatrix}2&5&1\\-3&0&4\\6&-2&-4\end{pmatrix}\)
\(\begin{aligned} a_{12}-a_{31}&=5-6\\ &=\boxed{\boxed{-1}} \end{aligned}\)
\(\begin{aligned} a_{12}-a_{31}&=5-6\\ &=\boxed{\boxed{-1}} \end{aligned}\)
Jadi, nilai (a12 − a31) dari transpose P adalah −1.
JAWAB: C
JAWAB: C
No.
Matriks- \(\begin{pmatrix}3&2\\-1&-2\end{pmatrix}\)
- \(\begin{pmatrix}2&-1\\2&1\end{pmatrix}\)
- \(\begin{pmatrix}3&2\\-1&2\end{pmatrix}\)
- \(\begin{pmatrix}2&-1\\-2&-1\end{pmatrix}\)
- \(\begin{pmatrix}2&-1\\-2&1\end{pmatrix}\)
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
A^{-1}&=\dfrac1{(2)(3)-(-2)(1)}\begin{pmatrix}3&2\\-1&2\end{pmatrix}\\
&=\dfrac18\begin{pmatrix}3&2\\-1&2\end{pmatrix}
\end{aligned}\)
\(\begin{aligned} AXA^{-1}&=B\\ AX&=BA\\ x&=A^{-1}BA\\ &=\dfrac18\begin{pmatrix}3&2\\-1&2\end{pmatrix}\begin{pmatrix}3&2\\-1&-2\end{pmatrix}\begin{pmatrix}2&-2\\1&3\end{pmatrix}\\ &=\dfrac18\begin{pmatrix}7&2\\-5&-6\end{pmatrix}\begin{pmatrix}2&-2\\1&3\end{pmatrix}\\ &=\dfrac18\begin{pmatrix}16&-8\\-16&-8\end{pmatrix}\\ &=\boxed{\boxed{\begin{pmatrix}2&-1\\-2&-1\end{pmatrix}}} \end{aligned}\)
\(\begin{aligned} AXA^{-1}&=B\\ AX&=BA\\ x&=A^{-1}BA\\ &=\dfrac18\begin{pmatrix}3&2\\-1&2\end{pmatrix}\begin{pmatrix}3&2\\-1&-2\end{pmatrix}\begin{pmatrix}2&-2\\1&3\end{pmatrix}\\ &=\dfrac18\begin{pmatrix}7&2\\-5&-6\end{pmatrix}\begin{pmatrix}2&-2\\1&3\end{pmatrix}\\ &=\dfrac18\begin{pmatrix}16&-8\\-16&-8\end{pmatrix}\\ &=\boxed{\boxed{\begin{pmatrix}2&-1\\-2&-1\end{pmatrix}}} \end{aligned}\)
Jadi, \(X=\begin{pmatrix}2&-1\\-2&-1\end{pmatrix}\).
JAWAB: D
JAWAB: D
No.
Diketahui matriks \(A=\begin{pmatrix}2&-5\\-5&12\end{pmatrix}\) dan \(B=\begin{pmatrix}1&-2\\-1&1\end{pmatrix}\). TentukanALTERNATIF PENYELESAIAN
\(\begin{aligned}
3AB&=3\begin{pmatrix}2&-5\\-5&12\end{pmatrix}\begin{pmatrix}1&-2\\-1&1\end{pmatrix}\\
&=3\begin{pmatrix}(2)(1)+(-5)(-1)&(2)(-2)+(-5)(1)\\(-5)(1)+(12)(-1)&(-5)(-2)+(12)(1)\end{pmatrix}\\
&=3\begin{pmatrix}2+5&-4-5\\-5-12&10+12\end{pmatrix}\\
&=3\begin{pmatrix}7&-9\\-17&22\end{pmatrix}\\
&=\boxed{\boxed{\begin{pmatrix}21&-27\\-54&66\end{pmatrix}}}
\end{aligned}\)
Jadi, \((3AB)^{-1}=\begin{pmatrix}21&-27\\-54&66\end{pmatrix}\).
No.
Diketahui matriks \(A=\begin{pmatrix}1&0\\2&3\end{pmatrix}\), \(B=\begin{pmatrix}-1&-3\\2&0\end{pmatrix}\), dan memenuhi persamaan- 6
- 7
- 8
- 9
- 10
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
|A|&=(1)(3)-(0)(2)\\
&=3-0\\
&=3
\end{aligned}\)
\(\begin{aligned}
AX+2B&=I\\
AX&=I-2B\\
&=\begin{pmatrix}1&0\\0&1\end{pmatrix}-2\begin{pmatrix}-1&-3\\2&0\end{pmatrix}\\
&=\begin{pmatrix}1&0\\0&1\end{pmatrix}-\begin{pmatrix}-2&-6\\4&0\end{pmatrix}\\
&=\begin{pmatrix}3&6\\-4&1\end{pmatrix}\\
|AX|&=\begin{vmatrix}3&6\\-4&1\end{vmatrix}\\
|A||X|&=(3)(1)-(6)(-4)\\
3|X|&=3+24\\
&=27\\
|X|&=\boxed{\boxed{9}}
\end{aligned}\)
Jadi, nilai determinan matriks X adalah 9.
JAWAB: D
JAWAB: D
No.
Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}2&1\\4&5\end{pmatrix}A=\begin{pmatrix}3&1\\3&2\end{pmatrix}\begin{pmatrix}2&5\\1&3\end{pmatrix}}\), maka determinan dari- −2
- \(-\dfrac12\)
- 0
- 1
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{pmatrix}2&1\\4&5\end{pmatrix}A&=\begin{pmatrix}3&1\\3&2\end{pmatrix}\begin{pmatrix}2&5\\1&3\end{pmatrix}\\
\begin{vmatrix}2&1\\4&5\end{vmatrix}|A|&=\begin{vmatrix}3&1\\3&2\end{vmatrix}\begin{vmatrix}2&5\\1&3\end{vmatrix}\\
6|A|&=(3)(1)\\
6|A|&=3\\
|A|&=\dfrac36\\
&=\dfrac12
\end{aligned}\)
\(\begin{aligned}
\left|A^{-1}\right|&=\dfrac1{|A|}\\
&=\dfrac1{\dfrac12}\\
&=\boxed{\boxed{2}}
\end{aligned}\)
Jadi, determinan dari A−1 adalah 2.
JAWAB: E
JAWAB: E
No.
Jika matriks \(A=\begin{pmatrix}2&1\\3&-4\end{pmatrix}\), \(B=\begin{pmatrix}-4&-1\\-3&2\end{pmatrix}\), dan \(C=\begin{pmatrix}-11&0\\0&-11\end{pmatrix}\), maka- \(\begin{pmatrix}1&1\\1&1\end{pmatrix}\)
- \(\begin{pmatrix}1&0\\0&1\end{pmatrix}\)
- \(\begin{pmatrix}0&1\\1&0\end{pmatrix}\)
- \(\begin{pmatrix}-1&-1\\-1&-1\end{pmatrix}\)
- \(\begin{pmatrix}0&0\\0&0\end{pmatrix}\)
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
(A\times B)-C&=\begin{pmatrix}2&1\\3&-4\end{pmatrix}\begin{pmatrix}-4&-1\\-3&2\end{pmatrix}-\begin{pmatrix}-11&0\\0&-11\end{pmatrix}\\
&=\begin{pmatrix}-11&0\\0&-11\end{pmatrix}-\begin{pmatrix}-11&0\\0&-11\end{pmatrix}\\
&=\boxed{\boxed{\begin{pmatrix}0&0\\0&0\end{pmatrix}}}
\end{aligned}\)
Jadi, \((A\times B)-C=\begin{pmatrix}0&0\\0&0\end{pmatrix}\).
JAWAB: E
JAWAB: E
No.
Jika diketahui \(\begin{pmatrix}x+3\\4-y\end{pmatrix}=\begin{pmatrix}7\\5\end{pmatrix}\), Nilai dariALTERNATIF PENYELESAIAN
\(\begin{aligned}
x+3&=7\\
x&=4
\end{aligned}\)
\(\begin{aligned} 4-y&=5\\ -y&=1\\ y&=-1 \end{aligned}\)
\(\begin{aligned} 4-y&=5\\ -y&=1\\ y&=-1 \end{aligned}\)
\(\begin{aligned}
x+y&=4+(-1)\\
&=\boxed{\boxed{3}}
\end{aligned}\)
Jadi, x + y = 3.
Post a Comment