Exercise Zone : Matriks
Berikut ini adalah kumpulan soal mengenai Matriks tingkat dasar. Mau tanya soal? Gabung aja ke grup Facebook https://web.facebook.com/groups/matematikazoneid/ atau Telegram https://t.me/matematikazoneidgrup.
r ≠ 0 dan p ≠ 0 . Matriks PQ tidak mempunyai invers apabila nilai p = ....
2K − L + M adalah....
C = AB, maka determinan matriks C = ....
x − y =
5A = 3AT + 16I , maka nilai 10a + 4b adalah
2×2 dan \(B=\begin{pmatrix}-3&5\\-1&2\end{pmatrix}\) dan \(C=\begin{pmatrix}4&5\\2&3\end{pmatrix}\). Jika A memenuhi B ⋅ A = C, maka det (2A−1) adalah
Tipe:
No.
Jika matriks \(A\cdot B=\begin{pmatrix}4&6\\-7&-14\end{pmatrix}\) dan det A = 7 , maka det(7BA−1) adalah....
- −16
- −15
- −14
- −13
- −12
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
A\cdot B&=\begin{pmatrix}4&6\\-7&-14\end{pmatrix}\\[4pt]
|AB|&=(4)(-14)-(6)(-7)\\
|A||B|&=-56+42\\
7|B|&=-14\\
|B|&=-2
\end{aligned}\)
\(\begin{aligned}
\left|7BA^{-1}\right|&=7^2|B|\left|A^{-1}\right|\\
&=49(-2)\left(\dfrac1{|A|}\right)\\
&=-98\left(\dfrac17\right)\\
&=\boxed{\boxed{-14}}
\end{aligned}\)
Jadi, det(7BA−1) = −14.
JAWAB: C
JAWAB: C
No.
Jika \({A=\begin{pmatrix}-1&-1&0\\-1&1&2\end{pmatrix}}\), \({B=\begin{pmatrix}-4&x\\-8&y\\-6&z\end{pmatrix}}\) dan \({AB=\begin{pmatrix}12&18\\-16&4\end{pmatrix}}\), maka nilai z − x adalah ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
AB&=\begin{pmatrix}12&18\\-16&4\end{pmatrix}\\
\begin{pmatrix}-1&-1&0\\-1&1&2\end{pmatrix}\begin{pmatrix}-4&x\\-8&y\\-6&z\end{pmatrix}&=\begin{pmatrix}12&18\\-16&4\end{pmatrix}\\
\begin{pmatrix}12&-x-y\\-16&-x+y+2z\end{pmatrix}&=\begin{pmatrix}12&18\\-16&4\end{pmatrix}
\end{aligned}\)
\(\begin{aligned}
-x-y&=18\\
-x+y+2z&=4&\qquad+\\\hline
-2x+2z&=22\\
2z-2x&=22\\
z-x&=\boxed{\boxed{11}}
\end{aligned}\)
Jadi, z − x = 11.
No.
Diketahui matriks \({A=\begin{pmatrix}-6&-9\\9&-8\end{pmatrix}}\) dan \({B=\begin{pmatrix}1&y\\x&3\end{pmatrix}}\). Jika determinan AB adalah 903 maka xy = ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
|AB|&=903\\
|A||B|&=903\\
(129)(3-xy)&=903\\
3-xy&=7\\
xy&=\boxed{\boxed{-4}}
\end{aligned}\)
Jadi, xy = −4.
No.
Diberikan matriks \(P=\begin{pmatrix}2&-1\\4&3\end{pmatrix}\) dan \(Q=\begin{pmatrix}2r&1\\r&p+1\end{pmatrix}\) denganALTERNATIF PENYELESAIAN
\(\begin{aligned}
|PQ|&=0\\
|P||Q|&=0\\
((2)(3)-(-1)(4))((2r)(p+1)-(1)(r))&=0\\
(10)(2pr+2r-r)&=0\\
2pr+r&=0\\
r(2p+1)&=0\\
2p+1&=0\\
2p&=-1\\
p&=-\dfrac12
\end{aligned}\)
Jadi, \(p=-\dfrac12\).
No.
Matriks A yang memenuhi \(\begin{pmatrix}2&k\\1&0\end{pmatrix}A=\begin{pmatrix}2&4k\\1&0\end{pmatrix}\) adalah ....ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{pmatrix}2&k\\1&0\end{pmatrix}A&=\begin{pmatrix}2&4k\\1&0\end{pmatrix}\\
A&=\begin{pmatrix}2&k\\1&0\end{pmatrix}^{-1}\begin{pmatrix}2&4k\\1&0\end{pmatrix}\\
&=\dfrac1{2\cdot0-k\cdot1}\begin{pmatrix}0&-k\\-1&2\end{pmatrix}\begin{pmatrix}2&4k\\1&0\end{pmatrix}\\
&=\dfrac1{-k}\begin{pmatrix}-k&0\\0&-4k\end{pmatrix}\\
&=\begin{pmatrix}1&0\\0&4\end{pmatrix}
\end{aligned}\)
Jadi, \(A=\begin{pmatrix}1&0\\0&4\end{pmatrix}\).
No.
Diketahui matriks \(K=\begin{pmatrix}-1&4\\3&-2\end{pmatrix}\), \(L=\begin{pmatrix}5&1\\3&-2\end{pmatrix}\) dan \({M=\begin{pmatrix}9&0\\6&-1\end{pmatrix}}\). Matriks- \(\begin{pmatrix}-2&8\\-8&3\end{pmatrix}\)
- \(\begin{pmatrix}1&7\\-6&3\end{pmatrix}\)
- \(\begin{pmatrix}2&7\\9&-3\end{pmatrix}\)
- \(\begin{pmatrix}2&7\\9&3\end{pmatrix}\)
- \(\begin{pmatrix}2&9\\7&-3\end{pmatrix}\)
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
2K-L+M&=2\begin{pmatrix}-1&4\\3&-2\end{pmatrix}-\begin{pmatrix}5&1\\3&-2\end{pmatrix}+\begin{pmatrix}9&0\\6&-1\end{pmatrix}\\
&=\begin{pmatrix}-2&8\\6&-4\end{pmatrix}-\begin{pmatrix}5&1\\3&-2\end{pmatrix}+\begin{pmatrix}9&0\\6&-1\end{pmatrix}\\
&=\boxed{\boxed{\color{blue}\begin{pmatrix}2&7\\9&-3\end{pmatrix}}}
\end{aligned}\)
Jadi, \(2K-L+M=\begin{pmatrix}2&7\\9&-3\end{pmatrix}\).
JAWAB: E
JAWAB: E
No.
Diketahui matriks \(A=\begin{pmatrix}-1&2\\3&-2\end{pmatrix}\) dan \(B=\begin{pmatrix}1&-2\\3&0\end{pmatrix}\). Jika matriks- 18
- 12
- −24
- −30
- −36
ALTERNATIF PENYELESAIAN
\(\begin{aligned}C&=AB\\
|C|&=|A||B|\\
&=\left[(-1)(-2)-(2)(3)\right]\cdot[(1)(0)-(-2)(3)]\\
&=[2-6][0-(-6)]\\
&=(-4)(6)\\
&=-24\end{aligned}\)
Jadi, determinan matriks C adalah −24.
JAWAB: C
JAWAB: C
No.
Diketahui persamaan matriks:\[2\begin{pmatrix}x&2\\6&6\end{pmatrix}+\begin{pmatrix}2&4\\-2&0\end{pmatrix}=\begin{pmatrix}1&3\\2&4\end{pmatrix}\begin{pmatrix}-1&2\\3&y\end{pmatrix}\] Nilai- −2
- 2
- 0
- 1
- −1
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
2\begin{pmatrix}x&2\\6&6\end{pmatrix}+\begin{pmatrix}2&4\\-2&0\end{pmatrix}&=\begin{pmatrix}1&3\\2&4\end{pmatrix}\begin{pmatrix}-1&2\\3&y\end{pmatrix}\\
\begin{pmatrix}2x&4\\12&12\end{pmatrix}+\begin{pmatrix}2&4\\-2&0\end{pmatrix}&=\begin{pmatrix}8&3y+2\\10&4y+4\end{pmatrix}\\
\begin{pmatrix}2x+2&8\\10&12\end{pmatrix}&=\begin{pmatrix}8&3y+2\\10&4y+4\end{pmatrix}
\end{aligned}\)
Jadi, x − y = 1.
JAWAB: D
JAWAB: D
No.
Misalkan AT adalah transpose matriks A dan \(I=\begin{pmatrix}1&0\\0&1\end{pmatrix}\). Jika \(A=\begin{pmatrix}8&0\\a&b\end{pmatrix}\) sehingga- 32
- 34
- 35
- 36
- 40
ALTERNATIF PENYELESAIAN
\(A^T=\begin{pmatrix}8&a\\0&b\end{pmatrix}\)
\(\begin{aligned} 5A&=3A^T+16I\\ 5\begin{pmatrix}8&0\\a&b\end{pmatrix}&=3\begin{pmatrix}8&a\\0&b\end{pmatrix}+16\begin{pmatrix}1&0\\0&1\end{pmatrix}\\ \begin{pmatrix}40&0\\5a&5b\end{pmatrix}&=\begin{pmatrix}24&3a\\0&3b\end{pmatrix}+\begin{pmatrix}16&0\\0&16\end{pmatrix}\\ \begin{pmatrix}40&0\\5a&5b\end{pmatrix}&=\begin{pmatrix}40&3a\\0&3b+16\end{pmatrix} \end{aligned}\)
\(\begin{aligned} 5A&=3A^T+16I\\ 5\begin{pmatrix}8&0\\a&b\end{pmatrix}&=3\begin{pmatrix}8&a\\0&b\end{pmatrix}+16\begin{pmatrix}1&0\\0&1\end{pmatrix}\\ \begin{pmatrix}40&0\\5a&5b\end{pmatrix}&=\begin{pmatrix}24&3a\\0&3b\end{pmatrix}+\begin{pmatrix}16&0\\0&16\end{pmatrix}\\ \begin{pmatrix}40&0\\5a&5b\end{pmatrix}&=\begin{pmatrix}40&3a\\0&3b+16\end{pmatrix} \end{aligned}\)
\(\begin{aligned}
0&=3a\\
a&=0
\end{aligned}\)
\(\begin{aligned} 5b&=3b+16\\ 2b&=16\\ 4b&=32 \end{aligned}\)
\(\begin{aligned} 10a+4b&=10(0)+32\\ &=\boxed{\boxed{32}} \end{aligned}\)
\(\begin{aligned} 5b&=3b+16\\ 2b&=16\\ 4b&=32 \end{aligned}\)
\(\begin{aligned} 10a+4b&=10(0)+32\\ &=\boxed{\boxed{32}} \end{aligned}\)
Jadi, 10a + 4b = 32.
JAWAB: A
JAWAB: A
No.
Diketahui matriks A berordo- −2
- −1
- \(-\dfrac12\)
- $\dfrac12$
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\det B&=(-3)(2)-(5)(-1)\\
&=-6-(-5)\\
&=-1
\end{aligned}\)
\(\begin{aligned} \det C&=(4)(3)-(2)(5)\\ &=12-10\\ &=2 \end{aligned}\)
\(\begin{aligned} B\cdot A&=C\\ A&=B^{-1}\cdot C\\ \det A&=\det\left(B^{-1}\cdot C\right)\\ &=\dfrac1{\det B}\cdot\det C\\ &=\dfrac1{-1}\cdot2\\ &=-2 \end{aligned}\)
\(\begin{aligned} \det C&=(4)(3)-(2)(5)\\ &=12-10\\ &=2 \end{aligned}\)
\(\begin{aligned} B\cdot A&=C\\ A&=B^{-1}\cdot C\\ \det A&=\det\left(B^{-1}\cdot C\right)\\ &=\dfrac1{\det B}\cdot\det C\\ &=\dfrac1{-1}\cdot2\\ &=-2 \end{aligned}\)
\(\begin{aligned}
\det\left(2A^{-1}\right)&=2^2\det A^{-1}\\
&=4\cdot\dfrac1{\det A}\\
&=4\cdot\dfrac1{-2}\\
&=\boxed{\boxed{-2}}
\end{aligned}\)
Jadi, det (2A−1) = −2.
JAWAB: A
JAWAB: A
Post a Comment