HOTS Zone : Limit Fungsi Aljabar
Table of Contents
Tipe:
No.
ALTERNATIF PENYELESAIAN
Untuk n = 2 ,
\begin{aligned}
\displaystyle\lim_{x\to0^+}\left(f_2(x)\right)&=\displaystyle\lim_{x\to0^+}x^x\\
&=1
\end{aligned}
Untuk n = 3 ,
\begin{aligned}
\displaystyle\lim_{x\to0^+}\left(f_3(x)\right)&=\displaystyle\lim_{x\to0^+}x^{x^x}\\
&=\left(\displaystyle\lim_{x\to0^+}x\right)^{\left(\displaystyle\lim_{x\to0^+}x^x\right)}\\
&=\left(\displaystyle\lim_{x\to0^+}x\right)^1\\
&=\displaystyle\lim_{x\to0^+}x\\
&=0
\end{aligned}
Jadi, jika n genap maka fn(x) = 1 , dan jika n ganjil maka fn(x) = 0 .
Sehingga, \begin{aligned} \displaystyle\lim_{x\to0^+}\left(f_{2016}(x)+f_{2017}(x)+f_{2018}(x)\right)&=1+0+1\\ &=2 \end{aligned}
Sehingga, \begin{aligned} \displaystyle\lim_{x\to0^+}\left(f_{2016}(x)+f_{2017}(x)+f_{2018}(x)\right)&=1+0+1\\ &=2 \end{aligned}
Jadi, \displaystyle\lim_{x\to0^+}\left(f_{2016}(x)+f_{2017}(x)+f_{2018}(x)\right)=2 .
Post a Comment