HOTS Zone : Maksimum dan Minimum
Table of Contents
Tipe:
No.
Nilai maksimum dari \({\sqrt{\left|x-y\right|}+\sqrt{\left|y-z\right|}+\sqrt{\left|z-x\right|}}\) dengan- \(\sqrt{6063}\)
- \(2\sqrt{2021}\)
- \(\sqrt{4042}+\sqrt{2021}\)
- \(2\sqrt{2021}+\sqrt{4042}\)
- \(2021\sqrt{2}+2021\)
ALTERNATIF PENYELESAIAN
Misalkan x ≥ y ≥ z dan \({P=\sqrt{\left|x-y\right|}+\sqrt{\left|y-z\right|}+\sqrt{\left|z-x\right|}}\). P bisa kita tulis menjadi,
\({P=\sqrt{x-y}+\sqrt{y-z}+\sqrt{x-z}}\)
Nilai P akan semakin besar jika nilai x semakin besar dan nilai z semakin kecil. Didapatx = 2021 dan z = 0 . Substitusikan ke P menjadi
\({P=\sqrt{2021-y}+\sqrt{y}+\sqrt{2021}}\)
Dengan menggunakan ketaksamaan Cauchy-Schwarz didapat,
\(\begin{aligned} \left(\sqrt{2021-y}\cdot1+\sqrt{y}\cdot1\right)^2&\leq \left(\left(\sqrt{2021-y}\right)^2+\left(\sqrt{y}\right)^2\right)\left(1^2+1^2\right)\\ \left(\sqrt{2021-y}+\sqrt{y}\right)^2&\leq \left(2021-y+y\right)\left(2\right)\\ \left(\sqrt{2021-y}+\sqrt{y}\right)^2&\leq 4042\\ \sqrt{2021-y}+\sqrt{y}&\leq \sqrt{4042}\\ \sqrt{2021-y}+\sqrt{y}+\sqrt{2021}&\leq \sqrt{4042}+\sqrt{2021} \end{aligned}\)
\({P=\sqrt{x-y}+\sqrt{y-z}+\sqrt{x-z}}\)
Nilai P akan semakin besar jika nilai x semakin besar dan nilai z semakin kecil. Didapat
\({P=\sqrt{2021-y}+\sqrt{y}+\sqrt{2021}}\)
Dengan menggunakan ketaksamaan Cauchy-Schwarz didapat,
\(\begin{aligned} \left(\sqrt{2021-y}\cdot1+\sqrt{y}\cdot1\right)^2&\leq \left(\left(\sqrt{2021-y}\right)^2+\left(\sqrt{y}\right)^2\right)\left(1^2+1^2\right)\\ \left(\sqrt{2021-y}+\sqrt{y}\right)^2&\leq \left(2021-y+y\right)\left(2\right)\\ \left(\sqrt{2021-y}+\sqrt{y}\right)^2&\leq 4042\\ \sqrt{2021-y}+\sqrt{y}&\leq \sqrt{4042}\\ \sqrt{2021-y}+\sqrt{y}+\sqrt{2021}&\leq \sqrt{4042}+\sqrt{2021} \end{aligned}\)
Jadi, nilai maksimum dari \({\sqrt{\left|x-y\right|}+\sqrt{\left|y-z\right|}+\sqrt{\left|z-x\right|}}\) dengan x,y,z ∈ [0, 2021] adalah \(\sqrt{4042}+\sqrt{2021}\).
JAWAB: C
JAWAB: C
No.
Nilai maksimum dari \(y=x\sqrt{2-x^2}\) adalah ....- 0
- 1
- 1 dan 0
- −2 dan 0
- 2 dan 0
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
y&=x\sqrt{2-x^2}\\
y^2&=x^2\left(2-x^2\right)\\
&=2x^2-x^4
\end{aligned}\)
y mencapai maksimum saat \(\dfrac{dy}{dx}=0\)
\(\begin{aligned} 2y\ dy&=\left(4x-4x^3\right)\ dx\\ 2y\dfrac{dy}{dx}&=4x-4x^3\\ 2y(0)&=4x-4x^3\\ 4x^3-4x&=0\\ 4x(x+1)(x-1)&=0 \end{aligned}\)
x = 0, x = −1, x = 1
x = 0 ⟶ y = 0
x = −1 ⟶ y = −1
x = 1 ⟶ y = 1
y mencapai maksimum saat \(\dfrac{dy}{dx}=0\)
\(\begin{aligned} 2y\ dy&=\left(4x-4x^3\right)\ dx\\ 2y\dfrac{dy}{dx}&=4x-4x^3\\ 2y(0)&=4x-4x^3\\ 4x^3-4x&=0\\ 4x(x+1)(x-1)&=0 \end{aligned}\)
Jadi, nilai maksimum dari \(y=x\sqrt{2-x^2}\) adalah 1.
JAWAB: B
JAWAB: B
No.
Diberikan bilangan real x dan y sehingga memenuhi persamaanALTERNATIF PENYELESAIAN
\(\begin{aligned}
4x^2+y^2&=4x^2-2y+7\\
4x^2-4x+y^2+2y&=7\\
(2x-1)^2+(y+1)^2&=3^2
\end{aligned}\)
Misal
\(2x-1=a\longrightarrow x=\dfrac{a+1}2\)
\(y+1=b\longrightarrow y=b-1\)
\(\begin{aligned} 5x+6y&=5\cdot\dfrac{a+1}2+6(b-1)\\[3.8pt] &=\dfrac{5a+5}2+6b-6\\[3.8pt] &=\dfrac{5a+12b-7}2 \end{aligned}\)
Misal
\(2x-1=a\longrightarrow x=\dfrac{a+1}2\)
\(y+1=b\longrightarrow y=b-1\)
\(\begin{aligned} 5x+6y&=5\cdot\dfrac{a+1}2+6(b-1)\\[3.8pt] &=\dfrac{5a+5}2+6b-6\\[3.8pt] &=\dfrac{5a+12b-7}2 \end{aligned}\)
\(\begin{aligned}
(5a+12b)^2&\leq(5^2+12^2)(a^2+b^2)\\
&\leq(13^2)(3^2)\\
&\leq39^2
\end{aligned}\)
\(\begin{array}{rcccl} -39&\leq&5a+12b&\leq&39\\ -39&\leq&5(2x-1)+12(y+1)&\leq&39\\ -39&\leq&10x-5+12y+12&\leq&39\\ -39&\leq&10x+12y+7&\leq&39\\ -46&\leq&10x+12y&\leq&32\\ -23&\leq&5x+6y&\leq&16 \end{array}\)
\(\begin{aligned} |A|+|B|&=|16|+|-23|\\ &=\boxed{\boxed{39}} \end{aligned}\)
\(\begin{array}{rcccl} -39&\leq&5a+12b&\leq&39\\ -39&\leq&5(2x-1)+12(y+1)&\leq&39\\ -39&\leq&10x-5+12y+12&\leq&39\\ -39&\leq&10x+12y+7&\leq&39\\ -46&\leq&10x+12y&\leq&32\\ -23&\leq&5x+6y&\leq&16 \end{array}\)
\(\begin{aligned} |A|+|B|&=|16|+|-23|\\ &=\boxed{\boxed{39}} \end{aligned}\)
Jadi, |A| + |B| = 39 .
No.
Jika diketahui p, q, r adalah bilangan riil nonnegatif yang memenuhiALTERNATIF PENYELESAIAN
Dari persamaan pertama didapat bahwa 0 ≤ p,q ≤ 124
\begin{aligned}
p+q&=124\\
q+r&=248&+\\\hline
p+2q+r&=372\\
r+p&=372-2q
\end{aligned}
Nilai maksimum dicapai saat q minimum (q = 0 ), dan nilai minimum dicapat saat q maksimum (q = 124 ).
\begin{aligned}
M-m&=372-2(0)-\left(372-2(124)\right)\\
&=\boxed{\boxed{248}}
\end{aligned}
Jadi, nilai dari M − m adalah 248.
Post a Comment