SNBT Zone : Limit
Table of Contents
Tipe:
No.
Diketahui- 8
- 0
- −2
- −4
- −8
ALTERNATIF PENYELESAIAN
\begin{aligned}
f(x)&=x^2+(-4)x+b\\
&=x^2-4x+b
\end{aligned}
\begin{aligned}
f(3)&=1\\
3^2-4(3)+b&=1\\
9-12+b&=1\\
-3+b&=1\\
b&=4
\end{aligned}
\begin{aligned}
a+b&=-4+4\\
&=\boxed{\boxed{0}}
\end{aligned}
Jadi, a + b = 0 .
JAWAB: B
JAWAB: B
No.
Diketahui suku banyak- −1
- 2
- 5
- 4
- 0
ALTERNATIF PENYELESAIAN
habis dibagi x + 1 artinya f(−1) = 0
\begin{aligned}
f(-1)&=0\\
a(-1)^2-(a+b)(-1)-3&=0\\
a+a+b-3&=0\\
2a+b&=3
\end{aligned}
f'(x) = 2ax − a − b
\begin{aligned}
\displaystyle\lim_{x\to-1}\dfrac{f(x)}{x^2-x-2}&=2\\[3.7pt]
\displaystyle\lim_{x\to-1}\dfrac{f'(x)}{2x-1}&=2\\[3.7pt]
\dfrac{f'(-1)}{2(-1)-1}&=2\\[3.7pt]
\dfrac{2a(-1)-a-b}{-3}&=2\\
-2a-a-b&=-6\\
3a+b&=6
\end{aligned}
\begin{aligned}
3a+b&=6\\
2a+b&=3\qquad-\\\hline
a&=3
\end{aligned}
\begin{aligned}
2a+b&=3\\
2(3)+b&=3\\
b&=-3
\end{aligned}
\begin{aligned}
a+b&=3+(-3)\\
&=0
\end{aligned}
Jadi, nilai a + b adalah 0.
JAWAB: E
JAWAB: E
No.
-\dfrac32 -\dfrac23 \dfrac23
- 1
\dfrac32
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x-x^3}\right)&=\displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x(1+x)(1-x)}\right)\\[3.7pt]
&=\displaystyle\lim_{x\to1}\left(\dfrac{x(1+x)}{x(1+x)(1-x)}-\dfrac2{x(1+x)(1-x)}\right)\\[3.7pt]
&=\displaystyle\lim_{x\to1}\dfrac{x+x^2-2}{x(1+x)(1-x)}\\[3.7pt]
&=\displaystyle\lim_{x\to1}\dfrac{(x+2)(x-1)}{x(1+x)(1-x)}\\[3.7pt]
&=\displaystyle\lim_{x\to1}\dfrac{-(x+2)(1-x)}{x(1+x)(1-x)}\\[3.7pt]
&=\dfrac{-(1+2)}{1(1+1)}\\[3.7pt]
&=\dfrac{-3}2\\
&=\boxed{\boxed{-\dfrac32}}
\end{aligned}
Jadi, \displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x-x^3}\right)=-\dfrac32 .
JAWAB: A
JAWAB: A
No.
\sqrt3+\sqrt2 5-2\sqrt6 2\sqrt6
- 5
5+2\sqrt6
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}&=\displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}\cdot\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x+2\sqrt{x+1}}}\\[3.7pt]
&=\displaystyle\lim_{x\to5}\dfrac{x+2\sqrt{x+1}}{\sqrt{x^2-4(x+1)}}\\[3.7pt]
&=\dfrac{5+2\sqrt{5+1}}{\sqrt{5^2-4(5+1)}}\\[3.7pt]
&=\dfrac{5+2\sqrt6}{\sqrt{25-24}}\\[3.7pt]
&=\dfrac{5+2\sqrt6}{\sqrt1}\\
&=\boxed{\boxed{5+2\sqrt6}}
\end{aligned}
Jadi, \displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}} .
JAWAB: E
JAWAB: E
No.
Jika- 0
- 1
- 2
- 3
- 4
ALTERNATIF PENYELESAIAN
CARA 1
\begin{aligned} 3(4)\cdot f(4)&=0\\ 12(4a+b)&=0\\ 4a+b&=0 \end{aligned} Gunakan aturan L'hopital \begin{aligned} \displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)&=24\\[3.7pt] \displaystyle\lim_{x\to4}\left(\dfrac{3f(x)+3x\cdot f'(x)}1\right)&=24\\[3.7pt] 3f(4)+3(4)f'(4)&=24\\ 3(4a+b)+12(a)&=24\\ 3(0)+12a&=24\\ 12a&=24\\ a&=2 \end{aligned} \begin{aligned} 4a+b&=0\\ 4(2)+b&=0\\ 8+b&=0\\ b&=-8 \end{aligned}CARA 2
Jadi, f(5) = 2 .
JAWAB: C
JAWAB: C
No.
Nilai- 21
- 16
- 15
- 14
- 12
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&=11\\
\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)&=17&+\\\hline
\displaystyle\lim_{x\to a}7f(x)&=28\\
\displaystyle\lim_{x\to a}f(x)&=4
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&=11\\
5(4)-\displaystyle\lim_{x\to a}3g(x)&=11\\
20-\displaystyle\lim_{x\to a}3g(x)&=11\\
-\displaystyle\lim_{x\to a}3g(x)&=-9\\
\displaystyle\lim_{x\to a}3g(x)&=9\\
\displaystyle\lim_{x\to a}g(x)&=3
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to a}\left(f(x)\cdot g(x)\right)&=4\cdot3\\
&=\boxed{\boxed{12}}
\end{aligned}
Jadi, \displaystyle\lim_{x\to a}\left(f(x)\cdot g(x)\right)=12 .
JAWAB: E
JAWAB: E
No.
Jika2M − 1 \dfrac12(M-1) \dfrac14(M-2)
2M + 2 4M − 2
ALTERNATIF PENYELESAIAN
CARA 1
\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2}{x-1}&=M\\[3.7pt] \displaystyle\lim_{x\to1}\dfrac{\dfrac{4ax^3}{2\sqrt{ax^4+b}}}1&=M\\[3.7pt] \displaystyle\lim_{x\to1}\dfrac{4ax^3}{2\sqrt{ax^4+b}}&=M\qquad\color{red}{\text{L'hopital}} \end{aligned} \begin{aligned} \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}&=\displaystyle\lim_{x\to1}\dfrac{\dfrac{4ax^3}{2\sqrt{ax^4+b}}-2}{2x+2}\qquad\color{red}{\text{L'hopital}}\\[3.7pt] &=\dfrac{M-2}{2(1)+2}\\[3.7pt] &=\dfrac{M-2}4\\ &=\boxed{\boxed{\dfrac14(M-2)}} \end{aligned}CARA 2
\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}&=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2-2x+2}{(x-1)(x+3)}\\[3.7pt] &=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2-2(x-1)}{(x-1)(x+3)}\\[3.7pt] &=\displaystyle\lim_{x\to1}\dfrac{\dfrac{\sqrt{ax^4+b}-2}{x-1}-2}{x+3}\\[3.7pt] &=\dfrac{M-2}{1+3}\\[3.7pt] &=\dfrac{M-2}4\\ &=\boxed{\boxed{\dfrac14(M-2)}} \end{aligned}Jadi, \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}=\dfrac14(M-2) .
JAWAB: C
JAWAB: C
No.
Diketahui suku banyak- 3
- 4
- −5
- −6
- −7
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\lim_{x\to-1}\dfrac{ax^2+(a+1)x+1}{x^2+3x+2}&=4\\[3.7pt]
\displaystyle\lim_{x\to-1}\dfrac{2ax+a+1}{2x+3}&=4\\[3.7pt]
\dfrac{2a(-1)+a+1}{2(-1)+3}&=4\\[3.7pt]
\dfrac{-2a+a+1}{1}&=4\\[3.7pt]
-a+1&=4\\
a&=-3
\end{aligned}
\begin{aligned}
2a-b&=2(-3)-(-1)\\
&=-6+1\\
&=-5
\end{aligned}
Jadi, 2a − b = −5 .
JAWAB: C
JAWAB: C
No.
Nilai- 16
- 18
- 20
- 22
- 24
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&= 11\\
5\displaystyle\lim_{x\to a}f(x)-3\displaystyle\lim_{x\to a}g(x)&=11
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)&= 17\\
2\displaystyle\lim_{x\to a}f(x)+3\displaystyle\lim_{x\to a}g(x)&=17
\end{aligned}
\begin{aligned}
5\displaystyle\lim_{x\to a}f(x)-3\displaystyle\lim_{x\to a}g(x)&=11\\
2\displaystyle\lim_{x\to a}f(x)+3\displaystyle\lim_{x\to a}g(x)&=17&+\\\hline
7\displaystyle\lim_{x\to a}f(x)&=28\\
\displaystyle\lim_{x\to a}f(x)&=4\\
\displaystyle\lim_{x\to a}\left(4f(x)\right)&=\boxed{\boxed{16}}
\end{aligned}
Jadi, \displaystyle\lim_{x\to a}\left(4f(x)\right)=16 .
JAWAB: A
JAWAB: A
No.
Diketahui- −1
- 1
- −3
- 3
- 0
ALTERNATIF PENYELESAIAN
\begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{f(x)\cdot g(x)-5g(x)+f(x)-5}{\left(f(x)-5\right)(x-3)}&=0\\[3.7pt]
\displaystyle\lim_{x\to3}\dfrac{\left(f(x)-5\right)\left(g(x)+1\right)}{\left(f(x)-5\right)(x-3)}&=0\\[3.7pt]
\displaystyle\lim_{x\to3}\dfrac{g(x)+1}{x-3}&=0\\[3.7pt]
\displaystyle\lim_{x\to3}\dfrac{g'(x)}1&=0&\qquad\color{red}{\text{l'hopital}}\\[3.7pt]
\displaystyle\lim_{x\to3}g'(x)&=0\\
g'(3)&=0
\end{aligned}
Jadi, g'(3) = 0 .
JAWAB: E
JAWAB: E
Post a Comment