SNBT Zone : Sistem Persamaan Aljabar

Table of Contents
Berikut ini adalah kumpulan soal mengenai Sistem Persamaan Aljabar. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:

No.

Jika A dan B memenuhi \begin{cases}\dfrac{3A}{2A+3B}+\dfrac{6B}{2A-3B}=3\\[8pt]\dfrac{-6A}{2A+3B}+\dfrac{3B}{2A-3B}=-1\end{cases} maka \dfrac{AB}{4A^2-9B^2}= ....
  1. -\dfrac23
  2. -\dfrac13
  3. -\dfrac19
  1. \dfrac19
  2. \dfrac13
ALTERNATIF PENYELESAIAN
Misal {x=\dfrac{A}{2A+3B}} dan {y=\dfrac{B}{2A-3B}} \begin{array}{rl|l} 3x+6y&=3&\times2\\ -6x+3y&=-1&\times1 \end{array} \begin{aligned} 6x+12y&=6\\ -6x+3y&=-1\qquad+\\\hline 15y&=5\\ y&=\dfrac13\\ \dfrac{B}{2A-3B}&=\dfrac13 \end{aligned} \begin{aligned} 3x+6y&=3\\ 3x+6\left(\dfrac13\right)&=3\\ 3x+2&=3\\ x&=\dfrac13\\ \dfrac{A}{2A+3B}&=\dfrac13 \end{aligned} \begin{aligned} \dfrac{AB}{4A^2-9B^2}&=\left(\dfrac{A}{2A+3B}\right)\left(\dfrac{B}{2A-3B}\right)\\[4pt] &=\left(\dfrac13\right)\left(\dfrac13\right)\\[4pt] &=\dfrac19 \end{aligned}
Jadi, \dfrac{AB}{4A^2-9B^2}=\dfrac19.
JAWAB: D

No.

Jika x dan y memenuhi {\dfrac{2x+y}{3x-2y+3}=\dfrac1{15}} dan {\dfrac1{x+y}=\dfrac7{-2x+y}} maka nilai xy = ....
ALTERNATIF PENYELESAIAN
\begin{aligned} \dfrac{2x+y}{3x-2y+3}&=\dfrac1{15}\\ 15(2x+y)&=3x-2y+3\\ 30x+15y&=3x-2y+3\\ 27x+17y&=3 \end{aligned} \begin{aligned} \dfrac1{x+y}&=\dfrac7{-2x+y}\\ -2x+y&=7x+7y\\ -9x&=6y\\ 3x+2y&=0 \end{aligned} \begin{array}{rl|l} 27x+17y&=3&\times1\\ 3x+2y&=0&\times9 \end{array} \begin{aligned} 27x+17y&=3\\ 27x+18y&=0\qquad-\\\hline -y&=3\\ y&=-3 \end{aligned}
\begin{aligned} 3x+2y&=0\\ 3x+2(-3)&=0\\ x&=2 \end{aligned} \begin{aligned} x-y&=2-(-3)\\ &=5 \end{aligned}
Jadi, xy = 5.

No.

Jika ax + y = 4, x + by = 7, dan ab = 2, maka nilai 2ax − 3y =
  1. 28 − 32a
  2. 28 − 35a
  3. 28 − 38a
  1. 28 − 40a
  2. 28 − 46a
ALTERNATIF PENYELESAIAN
\begin{aligned} x+by&=7&\qquad\color{red}{\times a}\\ ax+aby&=7a\\ ax+2y&=7a \end{aligned} \begin{aligned} ax+y&=4&\qquad\color{red}{\times 7}\\ ax+2y&=7a&\qquad\color{red}{\times 5} \end{aligned} \begin{aligned} 7ax+7y&=28\\ 5ax+10y&=35a&\qquad\color{red}{-}\\\hline 2ax-3y&=\boxed{\boxed{28-35a}} \end{aligned}
Jadi, 2ax − 3y = 28 − 35a.
JAWAB: B

No.

Jika 3x − 2y = 4 dan \dfrac{216^x}{72^y} = 162, maka nilai dari y adalah . . .
  1. −1
  2. 0
  3. 1
  1. 2
  2. 3
ALTERNATIF PENYELESAIAN
\begin{aligned} \dfrac{216^x}{72^y}&= 162\\ \dfrac{\left(6^3\right)^x}{\left(2\cdot6^2\right)^y}&= 162\\ \dfrac{6^{3x}}{2^y\cdot6^{2y}}&= 162\\ \dfrac{6^{3x-2y}}{2^y}&= 2\cdot81\\ \dfrac{6^4}{2^y}&= 2\cdot3^4\\ 2^y&=\dfrac{6^4}{2\cdot3^4}\\ &=\dfrac{2^4\cdot3^4}{2\cdot3^4}\\ &=2^3\\ y&=3 \end{aligned}
Jadi, nilai dari y adalah 3
JAWAB: E

No.

Jika a dan b memenuhi \begin{cases}\dfrac2{2a-b}+\dfrac7{2a+b}&=3\\\dfrac1{2a-b}-\dfrac7{2a+b}&=0\end{cases} maka a + b =
  1. 5
  2. 6
  3. 7
  1. 8
  2. 9
ALTERNATIF PENYELESAIAN
\begin{aligned} \dfrac2{2a-b}+\dfrac7{2a+b}&=3\\\dfrac1{2a-b}-\dfrac7{2a+b}&=0\qquad&{\color{red}+}\\\hline \dfrac3{2a-b}&=3\\ 2a-b&=1 \end{aligned} \begin{aligned} \dfrac2{2a-b}+\dfrac7{2a+b}&=3\\ \dfrac21+\dfrac7{2a+b}&=3\\ 2+\dfrac7{2a+b}&=3\\ \dfrac7{2a+b}&=1\\ 2a+b&=7 \end{aligned} \begin{aligned} 2a-b&=1\\ 2a+b&=7\qquad&{\color{red}+}\\\hline 4a&=8\\ 2a&=4\\ a&=2 \end{aligned}
\begin{aligned} 2a+b&=7\\ 4+b&=7\\ b&=3 \end{aligned} \begin{aligned} a+b&=2+3\\ &=\boxed{\boxed{5}} \end{aligned}
Jadi, a + b = 5.
JAWAB: A

No.

Jumlah x dan y dari solusi (x, y) yang memenuhi sistem persamaan
xy = a
x2 + 5xy = 2
adalah ....
  1. −12
  2. −10
  3. −6
  1. 6
  2. 10
ALTERNATIF PENYELESAIAN
\(\begin{aligned} x-y&=a\\ y&=x-a \end{aligned}\)

\(\begin{aligned} x^2+5x-y&=2\\ x^2+5x-(x-a)&=2\\ x^2+4x+a-2&=0 \end{aligned}\)

\(\begin{aligned} D&=4^2-4(1)(a-2)\\ &=16-4a+8\\ &=-4a+24 \end{aligned}\)

Kita lihat bahwa jika D > 0, ada tak hingga nilai a yang memenuhi, akibatnya ada tak hingga nilai x yang memenuhi. Kita sepakati bahwa sistem persamaan di atas mempunyai satu solusi sehingga D = 0.

\(\begin{aligned} -4a+24&=0\\ a&=6 \end{aligned}\)

\(\begin{aligned} x^2+4x+6-2&=0\\ x^2+4x+4&=0\\ (x+2)^2&=0\\ x&=-2 \end{aligned}\)

\(\begin{aligned} y&=x-a\\ &=-2-6\\ &=-8 \end{aligned}\)

\(\begin{aligned} x+y&=-2+(-8)\\ &=\boxed{\boxed{-10}} \end{aligned}\)
Jadi, jumlah x dan y dari solusi (x, y) yang memenuhi sistem persamaan
xy = a
x2 + 5xy = 2
adalah −10.
JAWAB: B



Post a Comment