Exercise Zone : Determinan Matriks [2]

Table of Contents
Berikut ini adalah kumpulan soal mengenai Determinan Matriks. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:

StandarSNBTHOTS


No.

Diketahui matriks \(A=\begin{pmatrix}1&0\\2&3\end{pmatrix}\), \(B=\begin{pmatrix}-1&-3\\2&0\end{pmatrix}\), dan memenuhi persamaan AX + 2B = I, dengan I adalah matriks identitas. Maka nilai determinan matriks X adalah
  1. 6
  2. 7
  3. 8
  1. 9
  2. 10
ALTERNATIF PENYELESAIAN
\(\begin{aligned} |A|&=(1)(3)-(0)(2)\\ &=3-0\\ &=3 \end{aligned}\)
\(\begin{aligned} AX+2B&=I\\ AX&=I-2B\\ &=\begin{pmatrix}1&0\\0&1\end{pmatrix}-2\begin{pmatrix}-1&-3\\2&0\end{pmatrix}\\ &=\begin{pmatrix}1&0\\0&1\end{pmatrix}-\begin{pmatrix}-2&-6\\4&0\end{pmatrix}\\ &=\begin{pmatrix}3&6\\-4&1\end{pmatrix}\\ |AX|&=\begin{vmatrix}3&6\\-4&1\end{vmatrix}\\ |A||X|&=(3)(1)-(6)(-4)\\ 3|X|&=3+24\\ &=27\\ |X|&=\boxed{\boxed{9}} \end{aligned}\)
Jadi, nilai determinan matriks X adalah 9.
JAWAB: D

No.

Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}5&1\\7&2\end{pmatrix}A=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}}\), maka determinan dari A−1 adalah
  1. −2
  2. \(-\dfrac12\)
  3. 0
  1. \(\dfrac12\)
  2. 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \begin{pmatrix}5&1\\7&2\end{pmatrix}A&=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}\\ \begin{vmatrix}5&1\\7&2\end{vmatrix}|A|&=\begin{vmatrix}3&-2\\-3&1\end{vmatrix}\begin{vmatrix}3&4\\1&2\end{vmatrix}\\ (5\cdot2-1\cdot7)|A|&=(3\cdot1-(-2)\cdot(-3))(3\cdot2-4\cdot1)\\ (10-7)|A|&=(3-6)(6-4)\\ 3|A|&=(-3)(2)\\ 3|A|&=-6\\ |A|&=-2 \end{aligned}\)

\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\boxed{\boxed{-\dfrac12}} \end{aligned}\)
Jadi, determinan dari A−1 adalah \(-\dfrac12\).
JAWAB: B

No.

Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}2&1\\4&5\end{pmatrix}A=\begin{pmatrix}3&1\\3&2\end{pmatrix}\begin{pmatrix}2&5\\1&3\end{pmatrix}}\), maka determinan dari A−1 adalah
  1. −2
  2. \(-\dfrac12\)
  3. 0
  1. 1
  2. 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \begin{pmatrix}2&1\\4&5\end{pmatrix}A&=\begin{pmatrix}3&1\\3&2\end{pmatrix}\begin{pmatrix}2&5\\1&3\end{pmatrix}\\ \begin{vmatrix}2&1\\4&5\end{vmatrix}|A|&=\begin{vmatrix}3&1\\3&2\end{vmatrix}\begin{vmatrix}2&5\\1&3\end{vmatrix}\\ 6|A|&=(3)(1)\\ 6|A|&=3\\ |A|&=\dfrac36\\ &=\dfrac12 \end{aligned}\)
\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\dfrac1{\dfrac12}\\ &=\boxed{\boxed{2}} \end{aligned}\)
Jadi, determinan dari A−1 adalah 2.
JAWAB: E

No.

Jika matriks \(A\cdot B=\begin{pmatrix}4&6\\-7&-14\end{pmatrix}\) dan det A = 7, maka det(7BA−1) adalah....
  1. −16
  2. −15
  3. −14
  1. −13
  2. −12
ALTERNATIF PENYELESAIAN
\(\begin{aligned} A\cdot B&=\begin{pmatrix}4&6\\-7&-14\end{pmatrix}\\[4pt] |AB|&=(4)(-14)-(6)(-7)\\ |A||B|&=-56+42\\ 7|B|&=-14\\ |B|&=-2 \end{aligned}\)

\(\begin{aligned} \left|7BA^{-1}\right|&=7^2|B|\left|A^{-1}\right|\\ &=49(-2)\left(\dfrac1{|A|}\right)\\ &=-98\left(\dfrac17\right)\\ &=\boxed{\boxed{-14}} \end{aligned}\)
Jadi, det(7BA−1) = −14.
JAWAB: C

No.

Diketahui matriks A berordo 2×2 dan \(B=\begin{pmatrix}-3&5\\-1&2\end{pmatrix}\) dan \(C=\begin{pmatrix}4&5\\2&3\end{pmatrix}\). Jika A memenuhi BA = C, maka det (2A−1) adalah
  1. −2
  2. −1
  3. \(-\dfrac12\)
  1. $\dfrac12$
  2. 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \det B&=(-3)(2)-(5)(-1)\\ &=-6-(-5)\\ &=-1 \end{aligned}\)

\(\begin{aligned} \det C&=(4)(3)-(2)(5)\\ &=12-10\\ &=2 \end{aligned}\)

\(\begin{aligned} B\cdot A&=C\\ A&=B^{-1}\cdot C\\ \det A&=\det\left(B^{-1}\cdot C\right)\\ &=\dfrac1{\det B}\cdot\det C\\ &=\dfrac1{-1}\cdot2\\ &=-2 \end{aligned}\)
\(\begin{aligned} \det\left(2A^{-1}\right)&=2^2\det A^{-1}\\ &=4\cdot\dfrac1{\det A}\\ &=4\cdot\dfrac1{-2}\\ &=\boxed{\boxed{-2}} \end{aligned}\)
Jadi, det (2A−1) = −2.
JAWAB: A

No.

A dan B adalah matriks non singular ordo 2×2 dan \(C=\begin{pmatrix}x-2&2\\2x-5&4\end{pmatrix}\). Jika \(\det\left((AB)^{-1}\right)=\dfrac14\det(C)\) dan \(\det(A)+\det\left(B^{-1}\right)=\dfrac8{\begin{vmatrix}6&-5\\-4&4\end{vmatrix}}\), maka det(B) = ....
  1. 1
  2. 1,5
  3. 3
  1. 4,5
  2. 5
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \det(C)&=\begin{vmatrix}x-2&2\\2x-5&4\end{vmatrix}\\ &=4(x-2)-2(2x-5)\\ &=4x-8-4x+10\\ &=2 \end{aligned}\)

\(\begin{aligned} \det\left((AB)^{-1}\right)&=\dfrac14\det(C)\\[4pt] \dfrac1{\det\left(AB\right)}&=\dfrac14(2)\\[4pt] \dfrac1{\det(A)\cdot\det(B)}&=\dfrac12\\[4pt] \det(A)\cdot\det(B)&=2\\ \det(A)&=\dfrac2{\det(B)} \end{aligned}\)

\(\begin{aligned} \det(A)+\det\left(B^{-1}\right)&=\dfrac8{\begin{vmatrix}6&-5\\-4&4\end{vmatrix}}\\[4pt] \dfrac2{\det(B)}+\dfrac1{\det(B)}&=\dfrac8{(6)(4)-(-5)(-4)}\\[4pt] \dfrac3{\det(B)}&=\dfrac8{24-20}\\[4pt] \dfrac3{\det(B)}&=\dfrac84\\[4pt] \dfrac3{\det(B)}&=2\\[4pt] \det(B)&=\dfrac32\\ &=\boxed{\boxed{1{,}5}} \end{aligned}\)
Jadi, det(B) = 1,5.
JAWAB: B



Post a Comment