Exercise Zone : Determinan Matriks [2]
Table of Contents

Tipe:
No.
Diketahui matriks \(A=\begin{pmatrix}1&0\\2&3\end{pmatrix}\), \(B=\begin{pmatrix}-1&-3\\2&0\end{pmatrix}\), dan memenuhi persamaan- 6
- 7
- 8
- 9
- 10
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
|A|&=(1)(3)-(0)(2)\\
&=3-0\\
&=3
\end{aligned}\)
\(\begin{aligned}
AX+2B&=I\\
AX&=I-2B\\
&=\begin{pmatrix}1&0\\0&1\end{pmatrix}-2\begin{pmatrix}-1&-3\\2&0\end{pmatrix}\\
&=\begin{pmatrix}1&0\\0&1\end{pmatrix}-\begin{pmatrix}-2&-6\\4&0\end{pmatrix}\\
&=\begin{pmatrix}3&6\\-4&1\end{pmatrix}\\
|AX|&=\begin{vmatrix}3&6\\-4&1\end{vmatrix}\\
|A||X|&=(3)(1)-(6)(-4)\\
3|X|&=3+24\\
&=27\\
|X|&=\boxed{\boxed{9}}
\end{aligned}\)
Jadi, nilai determinan matriks X adalah 9.
JAWAB: D
JAWAB: D
No.
Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}5&1\\7&2\end{pmatrix}A=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}}\), maka determinan dari- −2
- \(-\dfrac12\)
- 0
- \(\dfrac12\)
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{pmatrix}5&1\\7&2\end{pmatrix}A&=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}\\
\begin{vmatrix}5&1\\7&2\end{vmatrix}|A|&=\begin{vmatrix}3&-2\\-3&1\end{vmatrix}\begin{vmatrix}3&4\\1&2\end{vmatrix}\\
(5\cdot2-1\cdot7)|A|&=(3\cdot1-(-2)\cdot(-3))(3\cdot2-4\cdot1)\\
(10-7)|A|&=(3-6)(6-4)\\
3|A|&=(-3)(2)\\
3|A|&=-6\\
|A|&=-2
\end{aligned}\)
\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\boxed{\boxed{-\dfrac12}} \end{aligned}\)
\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\boxed{\boxed{-\dfrac12}} \end{aligned}\)
Jadi, determinan dari A−1 adalah \(-\dfrac12\).
JAWAB: B
JAWAB: B
No.
Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}2&1\\4&5\end{pmatrix}A=\begin{pmatrix}3&1\\3&2\end{pmatrix}\begin{pmatrix}2&5\\1&3\end{pmatrix}}\), maka determinan dari- −2
- \(-\dfrac12\)
- 0
- 1
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{pmatrix}2&1\\4&5\end{pmatrix}A&=\begin{pmatrix}3&1\\3&2\end{pmatrix}\begin{pmatrix}2&5\\1&3\end{pmatrix}\\
\begin{vmatrix}2&1\\4&5\end{vmatrix}|A|&=\begin{vmatrix}3&1\\3&2\end{vmatrix}\begin{vmatrix}2&5\\1&3\end{vmatrix}\\
6|A|&=(3)(1)\\
6|A|&=3\\
|A|&=\dfrac36\\
&=\dfrac12
\end{aligned}\)
\(\begin{aligned}
\left|A^{-1}\right|&=\dfrac1{|A|}\\
&=\dfrac1{\dfrac12}\\
&=\boxed{\boxed{2}}
\end{aligned}\)
Jadi, determinan dari A−1 adalah 2.
JAWAB: E
JAWAB: E
No.
Jika matriks \(A\cdot B=\begin{pmatrix}4&6\\-7&-14\end{pmatrix}\) dan- −16
- −15
- −14
- −13
- −12
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
A\cdot B&=\begin{pmatrix}4&6\\-7&-14\end{pmatrix}\\[4pt]
|AB|&=(4)(-14)-(6)(-7)\\
|A||B|&=-56+42\\
7|B|&=-14\\
|B|&=-2
\end{aligned}\)
\(\begin{aligned}
\left|7BA^{-1}\right|&=7^2|B|\left|A^{-1}\right|\\
&=49(-2)\left(\dfrac1{|A|}\right)\\
&=-98\left(\dfrac17\right)\\
&=\boxed{\boxed{-14}}
\end{aligned}\)
Jadi, det(7BA−1) = −14.
JAWAB: C
JAWAB: C
No.
Diketahui matriks A berordo- −2
- −1
- \(-\dfrac12\)
- $\dfrac12$
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\det B&=(-3)(2)-(5)(-1)\\
&=-6-(-5)\\
&=-1
\end{aligned}\)
\(\begin{aligned} \det C&=(4)(3)-(2)(5)\\ &=12-10\\ &=2 \end{aligned}\)
\(\begin{aligned} B\cdot A&=C\\ A&=B^{-1}\cdot C\\ \det A&=\det\left(B^{-1}\cdot C\right)\\ &=\dfrac1{\det B}\cdot\det C\\ &=\dfrac1{-1}\cdot2\\ &=-2 \end{aligned}\)
\(\begin{aligned} \det C&=(4)(3)-(2)(5)\\ &=12-10\\ &=2 \end{aligned}\)
\(\begin{aligned} B\cdot A&=C\\ A&=B^{-1}\cdot C\\ \det A&=\det\left(B^{-1}\cdot C\right)\\ &=\dfrac1{\det B}\cdot\det C\\ &=\dfrac1{-1}\cdot2\\ &=-2 \end{aligned}\)
\(\begin{aligned}
\det\left(2A^{-1}\right)&=2^2\det A^{-1}\\
&=4\cdot\dfrac1{\det A}\\
&=4\cdot\dfrac1{-2}\\
&=\boxed{\boxed{-2}}
\end{aligned}\)
Jadi, det (2A−1) = −2.
JAWAB: A
JAWAB: A
No.
A dan B adalah matriks non singular ordo 2×2 dan \(C=\begin{pmatrix}x-2&2\\2x-5&4\end{pmatrix}\). Jika \(\det\left((AB)^{-1}\right)=\dfrac14\det(C)\) dan \(\det(A)+\det\left(B^{-1}\right)=\dfrac8{\begin{vmatrix}6&-5\\-4&4\end{vmatrix}}\), maka- 1
- 1,5
- 3
- 4,5
- 5
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\det(C)&=\begin{vmatrix}x-2&2\\2x-5&4\end{vmatrix}\\
&=4(x-2)-2(2x-5)\\
&=4x-8-4x+10\\
&=2
\end{aligned}\)
\(\begin{aligned} \det\left((AB)^{-1}\right)&=\dfrac14\det(C)\\[4pt] \dfrac1{\det\left(AB\right)}&=\dfrac14(2)\\[4pt] \dfrac1{\det(A)\cdot\det(B)}&=\dfrac12\\[4pt] \det(A)\cdot\det(B)&=2\\ \det(A)&=\dfrac2{\det(B)} \end{aligned}\)
\(\begin{aligned} \det\left((AB)^{-1}\right)&=\dfrac14\det(C)\\[4pt] \dfrac1{\det\left(AB\right)}&=\dfrac14(2)\\[4pt] \dfrac1{\det(A)\cdot\det(B)}&=\dfrac12\\[4pt] \det(A)\cdot\det(B)&=2\\ \det(A)&=\dfrac2{\det(B)} \end{aligned}\)
\(\begin{aligned}
\det(A)+\det\left(B^{-1}\right)&=\dfrac8{\begin{vmatrix}6&-5\\-4&4\end{vmatrix}}\\[4pt]
\dfrac2{\det(B)}+\dfrac1{\det(B)}&=\dfrac8{(6)(4)-(-5)(-4)}\\[4pt]
\dfrac3{\det(B)}&=\dfrac8{24-20}\\[4pt]
\dfrac3{\det(B)}&=\dfrac84\\[4pt]
\dfrac3{\det(B)}&=2\\[4pt]
\det(B)&=\dfrac32\\
&=\boxed{\boxed{1{,}5}}
\end{aligned}\)
Jadi, det(B) = 1,5 .
JAWAB: B
JAWAB: B
Post a Comment