Exercise Zone : Invers Matriks [2]
Table of Contents
Tipe:
No.
Diberikan matriks \({P = \begin{pmatrix}3&-1\\5&2\end{pmatrix}}\) dan \({Q = \begin{pmatrix}3r&2\\r&p+1\end{pmatrix}}\) dengan- 4
- 3
- 2
- 1
- 0
ALTERNATIF PENYELESAIAN
Tidak punya invers artinya det = 0.
\(\begin{aligned} \left|PQ\right|&=0\\ |P||Q|&=0 \end{aligned}\)
Karena|P| ≠ 0 maka
\(\begin{aligned} |Q|&=0\\ 3r(p+1)-2r&=0\\ 3pr+3r-2r&=0\\ 3pr+r&=0\\ r(3p+1)&=0\\ 3p+1&=0\\ 3p+2&=\boxed{\boxed{1}} \end{aligned}\)
\(\begin{aligned} \left|PQ\right|&=0\\ |P||Q|&=0 \end{aligned}\)
Karena
\(\begin{aligned} |Q|&=0\\ 3r(p+1)-2r&=0\\ 3pr+3r-2r&=0\\ 3pr+r&=0\\ r(3p+1)&=0\\ 3p+1&=0\\ 3p+2&=\boxed{\boxed{1}} \end{aligned}\)
Jadi, 3p + 2 = 1.
JAWAB: D
JAWAB: D
No.
Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}5&1\\7&2\end{pmatrix}A=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}}\), maka determinan dari- −2
- \(-\dfrac12\)
- 0
- \(\dfrac12\)
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{pmatrix}5&1\\7&2\end{pmatrix}A&=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}\\
\begin{vmatrix}5&1\\7&2\end{vmatrix}|A|&=\begin{vmatrix}3&-2\\-3&1\end{vmatrix}\begin{vmatrix}3&4\\1&2\end{vmatrix}\\
(5\cdot2-1\cdot7)|A|&=(3\cdot1-(-2)\cdot(-3))(3\cdot2-4\cdot1)\\
(10-7)|A|&=(3-6)(6-4)\\
3|A|&=(-3)(2)\\
3|A|&=-6\\
|A|&=-2
\end{aligned}\)
\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\boxed{\boxed{-\dfrac12}} \end{aligned}\)
\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\boxed{\boxed{-\dfrac12}} \end{aligned}\)
Jadi, determinan dari A−1 adalah \(-\dfrac12\).
JAWAB: B
JAWAB: B
No.
Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}2&1\\4&5\end{pmatrix}A=\begin{pmatrix}3&1\\3&2\end{pmatrix}\begin{pmatrix}2&5\\1&3\end{pmatrix}}\), maka determinan dari- −2
- \(-\dfrac12\)
- 0
- 1
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{pmatrix}2&1\\4&5\end{pmatrix}A&=\begin{pmatrix}3&1\\3&2\end{pmatrix}\begin{pmatrix}2&5\\1&3\end{pmatrix}\\
\begin{vmatrix}2&1\\4&5\end{vmatrix}|A|&=\begin{vmatrix}3&1\\3&2\end{vmatrix}\begin{vmatrix}2&5\\1&3\end{vmatrix}\\
6|A|&=(3)(1)\\
6|A|&=3\\
|A|&=\dfrac36\\
&=\dfrac12
\end{aligned}\)
\(\begin{aligned}
\left|A^{-1}\right|&=\dfrac1{|A|}\\
&=\dfrac1{\dfrac12}\\
&=\boxed{\boxed{2}}
\end{aligned}\)
Jadi, determinan dari A−1 adalah 2.
JAWAB: E
JAWAB: E
No.
Jika matriks \(A\cdot B=\begin{pmatrix}4&6\\-7&-14\end{pmatrix}\) dan- −16
- −15
- −14
- −13
- −12
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
A\cdot B&=\begin{pmatrix}4&6\\-7&-14\end{pmatrix}\\[4pt]
|AB|&=(4)(-14)-(6)(-7)\\
|A||B|&=-56+42\\
7|B|&=-14\\
|B|&=-2
\end{aligned}\)
\(\begin{aligned}
\left|7BA^{-1}\right|&=7^2|B|\left|A^{-1}\right|\\
&=49(-2)\left(\dfrac1{|A|}\right)\\
&=-98\left(\dfrac17\right)\\
&=\boxed{\boxed{-14}}
\end{aligned}\)
Jadi, det(7BA−1) = −14.
JAWAB: C
JAWAB: C
No.
Diketahui matriks A berordo- −2
- −1
- \(-\dfrac12\)
- $\dfrac12$
- 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\det B&=(-3)(2)-(5)(-1)\\
&=-6-(-5)\\
&=-1
\end{aligned}\)
\(\begin{aligned} \det C&=(4)(3)-(2)(5)\\ &=12-10\\ &=2 \end{aligned}\)
\(\begin{aligned} B\cdot A&=C\\ A&=B^{-1}\cdot C\\ \det A&=\det\left(B^{-1}\cdot C\right)\\ &=\dfrac1{\det B}\cdot\det C\\ &=\dfrac1{-1}\cdot2\\ &=-2 \end{aligned}\)
\(\begin{aligned} \det C&=(4)(3)-(2)(5)\\ &=12-10\\ &=2 \end{aligned}\)
\(\begin{aligned} B\cdot A&=C\\ A&=B^{-1}\cdot C\\ \det A&=\det\left(B^{-1}\cdot C\right)\\ &=\dfrac1{\det B}\cdot\det C\\ &=\dfrac1{-1}\cdot2\\ &=-2 \end{aligned}\)
\(\begin{aligned}
\det\left(2A^{-1}\right)&=2^2\det A^{-1}\\
&=4\cdot\dfrac1{\det A}\\
&=4\cdot\dfrac1{-2}\\
&=\boxed{\boxed{-2}}
\end{aligned}\)
Jadi, det (2A−1) = −2.
JAWAB: A
JAWAB: A
Post a Comment