HOTS Zone : Aljabar [2]
Berikut ini adalah kumpulan soal mengenai Aljabar. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.
Berikut ini adalah kumpulan soal mengenai Aljabar. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.
x,y ∈ ℝ, x > 2016 dan x > 2017. Jika \(2016\sqrt{(x+2016)(x-2016)}+2017\sqrt{(x+2017)(x-2017)}=\dfrac12\left(x^2+y^2\right)\)
maka nilai xy =
a + b = 8 dan ab = c2 + 16. Hasil dari a + b + c = ....
x3 + x−3 = ....
(x2 + 3x − 1)2 adalah ....
(x2 + 3x − 1)2 = (x2 + 3x − 1)(x2 + 3x − 1)
Kita ambil satu suku dari setiap kurung sedemikian sehingga hasil kalinya mengandung variabel x2.
\(\begin{aligned} \left(x^2\right)(-1)+(3x)(3x)+(-1)\left(x^2\right)&=-x^2+9x^2-x^2\\ &=7x^2 \end{aligned}\)
x + y adalah ....
|a − b| = 1, |b − c| = 1, |c − a| = 2 dan a × b × c = 60. Nilai dari \(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}-\dfrac1a-\dfrac1b-\dfrac1c=...\)
Tipe:
No.
Diketahuimaka nilai xy =
- 4066272
- 4068289
- 5750577,011
- 5756281,95
- 8132544
ALTERNATIF PENYELESAIAN
Misal \(a=\sqrt{(x+2016)(x-2016)}\)
\(\begin{aligned} a^2&=x^2-2016^2\\ x^2&=a^2+2016^2 \end{aligned}\)
Misal \(b=\sqrt{(y+2017)(y-2017)}\)
\(\begin{aligned} b^2&=y^2-2017^2\\ y^2&=b^2+2017^2 \end{aligned}\)
\(\begin{aligned} 2016a+2017b&=\dfrac12\left(a^2+2016^2+b^2+2017^2\right)\\ 2\cdot2016a+2\cdot2017b&=a^2+2016^2+b^2+2017^2\\ a^2-2\cdot2016a+2016^2+b^2-2\cdot2017b+2017^2&=0\\ (a-2016)^2+(b-2017)^2&=0 \end{aligned}\)
didapata= 2016 dan b= 2017
\(\begin{aligned} x^2&=2016^2+2016^2\\ &=2\cdot2016^2\\ x&=2016\sqrt2 \end{aligned}\)
\(\begin{aligned} y^2&=2017^2+2017^2\\ &=2\cdot2017^2\\ x&=2017\sqrt2 \end{aligned}\)
\(\begin{aligned} xy&=2016\sqrt2\cdot2017\sqrt2\\ &=\boxed{\boxed{8132544}} \end{aligned}\)
\(\begin{aligned} a^2&=x^2-2016^2\\ x^2&=a^2+2016^2 \end{aligned}\)
Misal \(b=\sqrt{(y+2017)(y-2017)}\)
\(\begin{aligned} b^2&=y^2-2017^2\\ y^2&=b^2+2017^2 \end{aligned}\)
\(\begin{aligned} 2016a+2017b&=\dfrac12\left(a^2+2016^2+b^2+2017^2\right)\\ 2\cdot2016a+2\cdot2017b&=a^2+2016^2+b^2+2017^2\\ a^2-2\cdot2016a+2016^2+b^2-2\cdot2017b+2017^2&=0\\ (a-2016)^2+(b-2017)^2&=0 \end{aligned}\)
didapat
\(\begin{aligned} x^2&=2016^2+2016^2\\ &=2\cdot2016^2\\ x&=2016\sqrt2 \end{aligned}\)
\(\begin{aligned} y^2&=2017^2+2017^2\\ &=2\cdot2017^2\\ x&=2017\sqrt2 \end{aligned}\)
\(\begin{aligned} xy&=2016\sqrt2\cdot2017\sqrt2\\ &=\boxed{\boxed{8132544}} \end{aligned}\)
Jadi, xy = 8132544.
JAWAB: E
JAWAB: E
No.
Jika \(n-\dfrac1n=x\), maka berapakah \(n^2+\dfrac1{n^2}\) jika dinyatakan dalam x?- x2 + 1
- x + 1
- x3 + 1
- x2 + 2
- \(\sqrt{x}+\sqrt1\)
ALTERNATIF PENYELESAIAN
\(\eqalign{
n-\dfrac1n&=x\\
\left(n-\dfrac1n\right)^2&=x^2\\
n^2-2(n)\left(\dfrac1n\right)+\left(\dfrac1n\right)^2&=x^2\\
n^2-2+\dfrac1{n^2}&=x^2\\
n^2+\dfrac1{n^2}&=\boxed{\boxed{x^2+2}}
}\)
Jadi, \(n^2+\dfrac1{n^2}=x^2+2\).
JAWAB: D
JAWAB: D
No.
Jika \(\dfrac{3a+4b}{2a-2b}=5\) maka tentukan nilai dari \(\dfrac{a^2+2b^2}{ab}\)ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac{3a+4b}{2a-2b}&=5\\
3a+4b&=10a-10b\\
7a&=14b\\
\dfrac{a}b&=2
\end{aligned}\)
\(\begin{aligned}
\dfrac{a^2+2b^2}{ab}&=\dfrac{a}b+2\dfrac{b}a\\
&=2+2\left(\dfrac12\right)\\
&=\boxed{\boxed{3}}
\end{aligned}\)
Jadi, \(\dfrac{a^2+2b^2}{ab}=3\).
No.
Nilai dari \(\dfrac{(1945+2011)^2+(2011-1945)^2}{1945^2+2011^2}\) adalah ....ALTERNATIF PENYELESAIAN
Misal a = 1945 dan b = 2011
\(\begin{aligned} \dfrac{(1945+2011)^2+(2011-1945)^2}{1945^2+2011^2}&=\dfrac{(a+b)^2+(b-a)^2}{a^2+b^2}\\ &=\dfrac{a^2+2ab+b^2+b^2-2ab+a^2}{a^2+b^2}\\ &=\dfrac{2\left(a^2+b^2\right)}{a^2+b^2}\\ &=\boxed{\boxed{2}} \end{aligned}\)
\(\begin{aligned} \dfrac{(1945+2011)^2+(2011-1945)^2}{1945^2+2011^2}&=\dfrac{(a+b)^2+(b-a)^2}{a^2+b^2}\\ &=\dfrac{a^2+2ab+b^2+b^2-2ab+a^2}{a^2+b^2}\\ &=\dfrac{2\left(a^2+b^2\right)}{a^2+b^2}\\ &=\boxed{\boxed{2}} \end{aligned}\)
Jadi, \(\dfrac{(1945+2011)^2+(2011-1945)^2}{1945^2+2011^2}=2.\)
No.
Bilangan-bilangan real a, b, dan c memenuhi sistem persamaan- 4
- 5
- 6
- 7
- 8
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
ab&\leq\dfrac{(a+b)^2}4\\
&\leq\dfrac{8^2}4\\
&\leq16
\end{aligned}\)
\(\begin{aligned} c^2+16&\geq16\\ ab&\geq16\\ \end{aligned}\)
Didapat ab = 16 dan c = 0
a + b + c = 8 + 0 = 8
\(\begin{aligned} c^2+16&\geq16\\ ab&\geq16\\ \end{aligned}\)
Didapat ab = 16 dan c = 0
a + b + c = 8 + 0 = 8
Jadi, a + b + c = 8.
JAWAB: E
JAWAB: E
No.
Jika \(x+\dfrac1x=4\) maka nilaiALTERNATIF PEMBAHASAN
\(\eqalign{
\left(x+\dfrac1x\right)^2&=4^2\\
x^2+2+\dfrac1{x^2}&=16\\
x^2+\dfrac1{x^2}&=14
}\)
\(\eqalign{
\left(x^2+\dfrac1{x^2}\right)\left(x+\dfrac1x\right)&=(14)(4)\\
x^3+x+\dfrac1x+\dfrac1{x^3}&=56\\
x^3+4+\dfrac1{x^3}&=56\\
x^3+\dfrac1{x^3}&=\boxed{\boxed{52}}
}\)
Jadi, x3 + x−3 = 52 .
No.
Koefisien x2 pada ekspansi- −2
- −1
- 2
- 7
- 9
ALTERNATIF PENYELESAIAN
Kita ambil satu suku dari setiap kurung sedemikian sehingga hasil kalinya mengandung variabel x2.
\(\begin{aligned} \left(x^2\right)(-1)+(3x)(3x)+(-1)\left(x^2\right)&=-x^2+9x^2-x^2\\ &=7x^2 \end{aligned}\)
Jadi, koefisien x2 pada ekspansi (x2 + 3x − 1)2 adalah 7.
JAWAB: D
JAWAB: D
No.
Diketahui x y memenuhi \[\dfrac{(x-2023)(y-2024)}{(x-2023)^2(y-2024)^2}=-\dfrac12\] Nilai yang mungkin bagiALTERNATIF PENYELESAIAN
Misal a = x − 2023 , dan b = y − 2023
\(\begin{aligned} \dfrac{ab}{a^2+b^2}&=-\dfrac12\\[3.8pt] 2ab&=-a^2-b^2\\ a^2+2ab+b^2&=0\\ (a+b)^2&=0\\ a+b&=0\\ x-2023+y-2024&=0\\ x+y&=4047 \end{aligned}\)
\(\begin{aligned} \dfrac{ab}{a^2+b^2}&=-\dfrac12\\[3.8pt] 2ab&=-a^2-b^2\\ a^2+2ab+b^2&=0\\ (a+b)^2&=0\\ a+b&=0\\ x-2023+y-2024&=0\\ x+y&=4047 \end{aligned}\)
Jadi, nilai yang mungkin bagi x + y adalah 4047.
No.
Jika x dan y bilangan real yang memenuhi \(\dfrac{x+40}y+\dfrac{569}{xy}=\dfrac{26-y}x\), tentukan nilai dari xy.- −260
- −270
- −280
- −300
- −400
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac{x+40}y+\dfrac{569}{xy}&=\dfrac{26-y}x&{\color{red}\times xy}\\[3.8pt]
x^2+40x+569&=26y-y^2\\
x^2+40x+400+y^2-26y+169&=0\\
(x+20)^2+(y-13)^2&=0
\end{aligned}\)
x = −20 dan y = 13
xy = −20×13 = −260
x = −20 dan y = 13
xy = −20×13 = −260
Jadi, xy = −260.
JAWAB: A
JAWAB: A
No.
Jika e, b, c adalah bilangan real yang memenuhiALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}-\dfrac1a-\dfrac1b-\dfrac1c&=\dfrac{a^2+b^2+c^2-ab-bc-ac}{abc}\\[3.8pt]
&=\dfrac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2abc}\\[3.8pt]
&=\dfrac{(a-b)^2+(b-c)^2+(c-a)^2}{2\cdot60}\\[3.8pt]
&=\dfrac{1^2+1^2+2^2}{120}\\
&=\boxed{\boxed{\dfrac1{20}}}
\end{aligned}\)
Jadi,
JAWAB:
JAWAB:
Post a Comment