HOTS Zone : Logaritma

Table of Contents
Berikut ini adalah kumpulan soal mengenai Logaritma. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:

No. 1

\(\dfrac{^4\negmedspace\log20^2}{{^4\negmedspace\log^280}-{^4\negmedspace\log^25}}=\) ....
  1. −1
  2. \(-\dfrac12\)
  3. \(\dfrac12\)
  1. 1
  2. 2
SKB Matematika 2020
ALTERNATIF PENYELESAIAN
\(\eqalign{ \dfrac{^4\negmedspace\log20^2}{{^4\negmedspace\log^280}-{^4\negmedspace\log^25}}&=\dfrac{^4\negmedspace\log20^2}{\left({^4\negmedspace\log80}+{^4\negmedspace\log5}\right)\left({^4\negmedspace\log80}-{^4\negmedspace\log5}\right)}\\ &=\dfrac{^4\negmedspace\log20^2}{{^4\negmedspace\log(80\cdot5)}\cdot{^4\negmedspace\log\dfrac{80}5}}\\ &=\dfrac{^4\negmedspace\log20^2}{{^4\negmedspace\log400}\cdot{^4\negmedspace\log16}}\\ &=\dfrac{^4\negmedspace\log20^2}{{^4\negmedspace\log20^2}\cdot2}\\ &=\boxed{\boxed{\dfrac12}} }\)
Jadi, \(\dfrac{^4\negmedspace\log20^2}{{^4\negmedspace\log^280}-{^4\negmedspace\log^25}}=\dfrac12\).
JAWAB: C


No. 2

Bentuk \((c)^{^{ab}\negmedspace\log b}\cdot(abc)^{^{ab}\negmedspace\log a}\) dapat disederhanakan menjadi ....
  1. a
  2. b
  3. c
  1. ac
  2. abc
ALTERNATIF PENYELESAIAN
\(\eqalign{ (c)^{^{ab}\negthinspace\log b}\cdot(abc)^{^{ab}\negthinspace\log a}&=(c)^{^{ab}\negthinspace\log b}\cdot(ab)^{^{ab}\negthinspace\log a}\cdot(c)^{^{ab}\negthinspace\log a}\\ &=(c)^{^{ab}\negthinspace\log b+{^{ab}\negthinspace\log a}}\cdot a\\ &=(c)^{^{ab}\negthinspace\log ab}\cdot a\\ &=c\cdot a\\ &=\boxed{\boxed{ac}} }\)
Jadi, \((c)^{^{ab}\negmedspace\log b}\cdot(abc)^{^{ab}\negmedspace\log a}=ac\).
JAWAB: D

No.

Jika diketahui nilai abc = 26 dan (2log a)(2log bc) + (2log b)(2log c) = 10, dengan a, b, c ≥ 0, maka nilai dari ekpresi \(\sqrt{{^2\negmedspace\log^2 a}+{^2\negmedspace\log^2 b}+{^2\negmedspace\log^2 c}}\) adalah ....
  1. 2
  2. 3
  3. 4
  1. 5
  2. 6
ALTERNATIF PENYELESAIAN
Misal 2log a = x, 2log b = y, 2log c = z

\(\begin{aligned} a\cdot b\cdot c&=2^6\\ ^2\negmedspace\log(a\cdot b\cdot c)&=6\\ {^2\negmedspace\log a}+{^2\negmedspace\log b}+{^2\negmedspace\log c}&=6\\ x+y+z&=6 \end{aligned}\)

\(\begin{aligned} \left({^2\negmedspace\log a}\right)\left({^2\negmedspace\log bc}\right)+\left({^2\negmedspace\log b}\right)\left({^2\negmedspace\log c}\right)&=10\\ \left({^2\negmedspace\log a}\right)\left({^2\negmedspace\log b}+{^2\negmedspace\log c}\right)+\left({^2\negmedspace\log b}\right)\left({^2\negmedspace\log c}\right)&=10\\ \left({^2\negmedspace\log a}\right)\left({^2\negmedspace\log b}\right)+\left({^2\negmedspace\log a}\right)\left({^2\negmedspace\log c}\right)+\left({^2\negmedspace\log b}\right)\left({^2\negmedspace\log c}\right)&=10\\ xy+xz+yz&=10 \end{aligned}\)

\(\begin{aligned} \sqrt{{^2\negmedspace\log^2 a}+{^2\negmedspace\log^2b}+{^2\negmedspace\log^2c}}&=\sqrt{x^2+y^2+z^2}\\ &=\sqrt{(x+y+z)^2-2(xy+xz+yz)}\\ &=\sqrt{6^2-2(10)}\\ &=\sqrt{16}\\ &=\boxed{\boxed{4}} \end{aligned}\)
Jadi, \(\sqrt{{^2\negmedspace\log^2 a}+{^2\negmedspace\log^2b}+{^2\negmedspace\log^2c}}=4\).
JAWAB: C

No.

Diberikan fungsi \(f(n)=1+\displaystyle\sum_{k=1}^n\left\lfloor{^3\negthinspace\log k}\right\rfloor\) yang terdefinisi pada bilangan asli n. Jika p adalah suatu bilangan sehingga f(p) = 2023, nilai p yang memenuhi berada pada interval ....
  1. 440 ≤ p < 450
  2. 450 ≤ p < 460
  3. 460 ≤ p < 470
  1. 470 ≤ p < 480
  2. 480 ≤ p < 490
ALTERNATIF PENYELESAIAN
Misal a adalah bilangan bulat tak-negatif. Untuk 3ak ≤ 3a + 1 − 1,
3log k⌋ = a

\(\begin{aligned} \displaystyle\sum_{k\ =\ 3^a}^{3^{a+1}-1}\left\lfloor{^3\negthinspace\log k}\right\rfloor&=a\left(3^{a+1}-1-3^a+1\right)\\ &=a\left(3\cdot3^a-3^a\right)\\ &=2a3^a \end{aligned}\)

\(\begin{aligned} \displaystyle\sum_{k\ =\ 1\ =\ 3^0}^{n\ =\ 3^{b+1}-1}\left\lfloor{^3\negthinspace\log k}\right\rfloor&=2\displaystyle\sum_{a=0}^{b}a3^a\\ &=2\left(\dfrac{3-(b+1)3^{b+1}+b3^{b+2}}{(1-3)^2}\right)\\[4pt] &=2\left(\dfrac{3-(b+1)3^{b+1}+3b3^{b+1}}{4}\right)\\[4pt] &=\dfrac{3+(2b-1)3^{b+1}}2 \end{aligned}\)

Kita car nilai b sehingga \(\dfrac{3+(2b-1)3^{b+1}}2\) mendekati atau sama dengan 2022
\(\begin{aligned} \dfrac{3+(2b-1)3^{b+1}}2&\leq2022\\[4pt] 3+(2b-1)3^{b+1}&\leq4044\\ (2b-1)3^{b+1}&\leq4041\\ (2b-1)3^b&\leq1347 \end{aligned}\)
Jika b = 5,
(2(5) − 1)35 = 2187 > 1347

Jika b = 4,
(2(4) − 1)34 = 567 < 1347

didapat b = 4

\(\dfrac{3+(2(4)-1)3^{4+1}}2=852\)

\(\begin{aligned} f(p)&=2023\\ 1+\displaystyle\sum_{k=1}^p\left\lfloor{^3\negthinspace\log k}\right\rfloor&=2023\\ \displaystyle\sum_{k=1}^{3^{4+1}-1}\left\lfloor{^3\negthinspace\log k}\right\rfloor+\displaystyle\sum_{k\ =\ 3^5\ =\ 243}^{p}\left\lfloor{^3\negthinspace\log k}\right\rfloor&=2022\\ 852+5(p-243+1)&=2022\\ p&=476 \end{aligned}\)
Jadi, nilai p yang memenuhi berada pada interval 470 ≤ p < 480.
JAWAB: D

No.

Diberikan bilangan bulat positif a, b, c, dan d yang memenuhi \begin{aligned} \log_ab&=\dfrac32\\[4pt] \log_cd&=\dfrac54\\[4pt] a-c&=9 \end{aligned} Misalkan X = bd. Jumlahan dari digit-digit dari X adalah ....
  1. 10
  2. 12
  3. 11
  1. 9
  2. 16
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \log_ab&=\dfrac32\\[4pt] a^3&=b^2=m^6 \end{aligned}\)
a = m2, b = m3

\(\begin{aligned} \log_cd&=\dfrac54\\[4pt] c^5&=d^4=n^{20} \end{aligned}\)
c = n4, d = n5

\(\begin{aligned} a-c&=9\\ m^2-n^4&=9\\ \left(m+n^2\right)\left(m-n^2\right)&=9\cdot1=3\cdot3 \end{aligned}\)
Karena m + n2 > mn2, maka
\(\begin{aligned} m+n^2&=9\\ m-n^2&=1&\ +\\\hline 2m&=10\\ m&=5 \end{aligned}\)
Didapat, n = 2

b = 53 = 125
d = 25 = 32
125 − 32 = 93
9 + 3 = 12
Jadi, jumlahan dari digit-digit dari X adalah 12.
JAWAB: B

No.

Jika $\dfrac{\log x}{q-r}=\dfrac{\log y}{r-p}=\dfrac{\log z}{p-q}$, maka nilai dari $x^{q+r}\cdot y^{r+p}\cdot z^{p+q}$ adalah ....
  1. 1
  2. −1
  3. 0
  1. 2
  2. −2
ALTERNATIF PENYELESAIAN
Misal $\dfrac{\log x}{q-r}=\dfrac{\log y}{r-p}=\dfrac{\log z}{p-q}=k$
$\log x=k(q-r)$, $\log y=k(r-p)$, $\log z=k(p-q)$
$x=10^{k(q-r)}$, $y=10^{k(r-p)}$, $z=10^{k(p-q)}$

\(\begin{aligned} x^{q+r}\cdot y^{r+p}\cdot z^{p+q}&=10^{k(q-r)(q+r)}\cdot10^{k(r-p)(r+p)}\cdot10^{k(p-q)(p+q)}\\ &=10^{k(q^2-r^2)}\cdot10^{k(r^2-p^2)}\cdot10^{k(p^2-q^2)}\\ &=10^{k(q^2-r^2+r^2-p^2+p^2-q^2)}\\ &=10^{k(0)}\\ &=\boxed{\boxed{1}} \end{aligned}\)
Jadi, $x^{q+r}\cdot y^{r+p}\cdot z^{p+q}=1$.
JAWAB: A

No.

Diketahui 2log(x − 1) + 2log(x + 2) = 3. Nilai dari 2log(x − 2) + 2log(x + 3) = ....
  1. 1
  2. 2
  3. 3
  1. 4
  2. 5
ALTERNATIF PENYELESAIAN
\(\begin{aligned} ^2\negmedspace\log(x-1)+{^2\negmedspace\log(x+2)}&=3\\ ^2\negmedspace\log\left((x-1)(x+2)\right)&=3\\ ^2\negmedspace\log(x^2+x-2)&=3\\ x^2+x-2&=2^3\\ x^2+x-2&=8\\ x^2+x&=10 \end{aligned}\)

\(\begin{aligned} ^2\negmedspace\log(x-2)+{^2\negmedspace\log(x+3)}&=^2\negmedspace\log\left((x-2)(x+3)\right)\\ &=^2\negmedspace\log(x^2+x-6)\\ &=^2\negmedspace\log(10-6)\\ &=^2\negmedspace\log4\\ &=2 \end{aligned}\)
Jadi, nilai dari 2log(x − 2) + 2log(x + 3) = 2.
JAWAB: B

No.

log2(x − 1) + log2(x + 2) = 3. Nilai dari log2(x − 2) + log2(x + 3) = ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \log_2(x-1)+\log_2(x+2)&=3\\ \log_2\left(x^2+x-2\right)&=3\\ x^2+x-2&=8\\ x^2+x&=10 \end{aligned}\)

\(\begin{aligned} \log_2(x-2)+\log_2(x+3)&=\log_2\left(x^2+x-6\right)\\ &=\log_2\left(10-6\right)\\ &=\log_24\\ &=\color{blue}\boxed{\boxed{\color{black}2}} \end{aligned}\)
Jadi, log2(x − 2) + log2(x + 3) = 2.



Post a Comment