SNBT Zone : Integral Tentu [2]

Table of Contents
Berikut ini adalah kumpulan soal mengenai Integral Tentu. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:



No.

Hasil dari \(\displaystyle\intop_{10}^{12}\dfrac{dx}{\sqrt{28x+8x\sqrt{x}}}=\)
  1. \({\sqrt2+\sqrt3-2+\sqrt5}\)
  2. \({\sqrt2+\sqrt3+2-\sqrt5}\)
  3. \({-\sqrt2+\sqrt3+2-\sqrt5}\)
  1. \({-\sqrt2+\sqrt3-2+\sqrt5}\)
  2. \({-\sqrt2+\sqrt3+2+\sqrt5}\)
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \displaystyle\intop_{10}^{12}\dfrac{dx}{\sqrt{28x+8x\sqrt{x}}}&=\displaystyle\intop_{10}^{12}\dfrac{dx}{\sqrt{4x\left(7+2\sqrt{x}\right)}}\\[8pt] &=\displaystyle\intop_{10}^{12}\dfrac{dx}{2\sqrt{x}\sqrt{7+2\sqrt{x}}} \end{aligned}\)

Misal
\(\begin{aligned} u&=7+2\sqrt{x}\\ du&=\dfrac2{2\sqrt{x}}\ dx\\[8pt] du&=\dfrac1{\sqrt{x}}\ dx \end{aligned}\)

\(\begin{aligned} \displaystyle\intop_{10}^{12}\dfrac{dx}{2\sqrt{x}\sqrt{7+2\sqrt{x}}}&=\displaystyle\intop_{10}^{12}\dfrac{du}{2\sqrt{u}}\\ &=\displaystyle\intop_{10}^{12}\dfrac12u^{-\frac12}\ du\\ &=\left[u^{\frac12}\right]_{10}^{12}\\ &=\left[\sqrt{u}\right]_{10}^{12}\\ &=\left[\sqrt{7+2\sqrt{x}}\right]_{10}^{12}\\ &=\left(\sqrt{7+2\sqrt{12}}\right)-\left(\sqrt{7+2\sqrt{10}}\right)\\ &=\left(\sqrt{4+3+2\sqrt{4\cdot3}}\right)-\left(\sqrt{2+5+2\sqrt{2\cdot5}}\right)\\ &=\left(\sqrt4+\sqrt3\right)-\left(\sqrt2+\sqrt5\right)\\ &=2+\sqrt3-\sqrt2+\sqrt5\\ &=\boxed{\boxed{-\sqrt2+\sqrt3+2+\sqrt5}} \end{aligned}\)
Jadi, \(\displaystyle\intop_{10}^{12}\dfrac{dx}{\sqrt{28x+8x\sqrt{x}}}=-\sqrt2+\sqrt3+2+\sqrt5\).
JAWAB: E

No.

Jika \({\displaystyle\intop_{-3}^3f(x)\left(\sin x+1\right)\ dx=10}\) dengan f(x) fungsi genap dan \({\displaystyle\intop_{-1}^3f(x)\ dx=7}\), maka \({\displaystyle\intop_1^3f(x)\ dx=}\) ....
  1. −4
  2. −3
  3. −2
  1. 3
  2. 4
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \displaystyle\intop_{-3}^3f(x)\left(\sin x+1\right)\ dx&=10\\ \displaystyle\intop_{-3}^3\left(f(x)\sin x+f(x)\right)\ dx&=10\\ \displaystyle\intop_{-3}^3f(x)\sin x\ dx+\displaystyle\intop_{-3}^3f(x)\ dx&=10 \end{aligned}\)
f(x) fungsi genap, sin x fungsi ganjil, sehingga f(x) sin x fungsi ganjil.
\(\displaystyle\intop_{-3}^3f(x)\sin x\ dx=0\)
\(\displaystyle\intop_{-3}^3f(x)\ dx=2\displaystyle\intop_0^3f(x)\ dx\) \(\begin{aligned} 0+2\displaystyle\intop_0^3f(x)\ dx&=10\\ \displaystyle\intop_0^3f(x)\ dx&=5 \end{aligned}\)

\(\begin{aligned} \displaystyle\intop_{-1}^0f(x)\ dx+\displaystyle\intop_0^3f(x)\ dx&=\displaystyle\intop_{-1}^3f(x)\ dx\\ \displaystyle\intop_{-1}^0f(x)\ dx+5&=7\\ \displaystyle\intop_{-1}^0f(x)\ dx&=2\\ \displaystyle\intop_0^1f(x)\ dx&=2 \end{aligned}\)

\(\begin{aligned} \displaystyle\intop_0^1f(x)\ dx+\displaystyle\intop_1^3f(x)\ dx&=\displaystyle\intop_0^3f(x)\ dx\\ 2+\displaystyle\intop_1^3f(x)\ dx&=5\\ \displaystyle\intop_1^3f(x)\ dx&=\boxed{\boxed{3}} \end{aligned}\)
Jadi, \({\displaystyle\intop_1^3f(x)\ dx=3}\).
JAWAB: D

No.

Jika nilai \(\displaystyle\intop_1^2f( x) dx= 4\), maka nilai \(\displaystyle\intop^1_0x\ f\left(x^2+1\right) dx\) adalah
  1. 2
  2. 3
  3. 4
  1. 5
  2. 6
ALTERNATIF PENYELESAIAN
Misal u = x2 + 1 \(\begin{aligned} du&=2x\ dx\\ x\ dx&=\dfrac12du \end{aligned}\)

x = 0 ⟶ u = 02 + 1 = 1
x = 1 ⟶ u = 12 + 1 = 2

\(\begin{aligned} \displaystyle\intop^2_0x\ f\left(x^2+1\right) dx&=\displaystyle\intop^2_1\ f\left(u\right) du\\ &=\boxed{\boxed{4}} \end{aligned}\)
Jadi, \(\displaystyle\intop^1_0x\ f\left(x^2+1\right) dx=4\).
JAWAB: C



Post a Comment