Exercise Zone : Panjang Vektor
Table of Contents
Tipe:
No.
Jika- −1
- 0
- 1
- 2
- 3
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\overrightarrow{TU}&=\vec{u}-\vec{t}\\
&=\begin{pmatrix}1\\0\\-1\end{pmatrix}-\begin{pmatrix}1\\1\\-1\end{pmatrix}\\
&=\begin{pmatrix}0\\-1\\0\end{pmatrix}\\
\left|\overrightarrow{TU}\right|&=\sqrt{0^2+(-1)^2+0^2}\\
&=\sqrt{0+1+0}\\
&=\sqrt1\\
&=\boxed{\boxed{1}}
\end{aligned}\)
Jadi, panjang vektor \(\overrightarrow{TU}\) adalah 1.
JAWAB: C
JAWAB: C
No.
Diketahui \(\left|\vec{a}\right|=4\), \(\left|\vec{b}\right|=5\) serta \(\left|\vec{a}+\vec{b}\right|=6\), tentukan nilai dari \(\left|\vec{a}-\vec{b}\right|\)ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\left|\vec{a}+\vec{b}\right|^2+\left|\vec{a}-\vec{b}\right|^2&=\left|\vec{a}\right|^2+\left|\vec{b}\right|^2\\
6^2+\left|\vec{a}-\vec{b}\right|^2&=4^2+5^2\\
36+\left|\vec{a}-\vec{b}\right|^2&=16+25\\
\left|\vec{a}-\vec{b}\right|^2&=5\\
\left|\vec{a}-\vec{b}\right|&=\boxed{\boxed{\sqrt5}}
\end{aligned}\)
Jadi, \(\left|\vec{a}-\vec{b}\right|=\sqrt5\).
No.
Tentukan panjang vektorALTERNATIF PENYELESAIAN
\(\begin{aligned}
|p|&=\sqrt{3^2+5^2+(-4)^2}\\
&=\sqrt{9+25+16}\\
&=\sqrt{50}\\
&=\boxed{\boxed{5\sqrt2}}
\end{aligned}
\)
Jadi, panjang vektor p = (3,5,−4) adalah \(5\sqrt2\).
Post a Comment