SNBT Zone : Invers Fungsi
Table of Contents
Tipe:
No. 1
Jika \({f(x+2)=\dfrac{2x-5}{3x+10}}\) maka nilai x yang memenuhiALTERNATIF PENYELESAIAN
\(\eqalign{
f(x+2)&=\dfrac{2x-5}{3x+10}\\[4pt]
f(x)&=\dfrac{2(x-2)-5}{3(x-2)+10}\\[4pt]
&=\dfrac{2x-4-5}{3x-6+10}\\[4pt]
&=\dfrac{2x-9}{3x+4}\\[4pt]
f^{-1}&=\dfrac{-4x-9}{3x-2}
}\)
\(\eqalign{
\left(f^{-1}\circ f^{-1}\right)(2x+1)&=1\\[4pt]
f^{-1}\left(f^{-1}(2x+1)\right)&=1\\[4pt]
\dfrac{-4(2x+1)-9}{3(2x+1)-2}&=f(1)\\[4pt]
\dfrac{-8x-4-9}{6x+3-2}&=\dfrac{2(1)-9}{3(1)+4}\\[4pt]
\dfrac{-8x-13}{6x+1}&=-1\\[4pt]
-8x-13&=-6x-1\\
x&=-6
}\)
Jadi, nilai x yang memenuhi (f−1 ∘ f−1)(2x + 1) = 1 adalah −6.
No. 2
Jika grafik \(y=\dfrac{2x+1}{ax-3}\) dan inversnya berpotongan di titik- 2
- −4
- −5
- 4
- 5
ALTERNATIF PENYELESAIAN
\(y^{-1}=\dfrac{3x+1}{ax-2}\)
\(\begin{aligned} \dfrac{2x_0+1}{ax_0-3}&=-1\\ 2x_0+1&=-ax_0+3\\ ax_0&=-2x_0+2 \end{aligned}\)
\(\begin{aligned} \dfrac{3x_0+1}{ax_0-2}&=-1\\ 3x_0+1&=-ax_0+2\\ ax_0&=-3x_0+1\\ -2x_0+2&=-3x_0+1\\ x_0&=-1 \end{aligned}\)
\(\begin{aligned} ax_0&=-2x_0+2\\ a(-1)&=-2(-1)+2\\ -a&=4\\ a&=-4 \end{aligned}\)
\(\begin{aligned} x_0+a&=-1+(-4)\\ &=\boxed{\boxed{-5}} \end{aligned}\)
\(\begin{aligned} \dfrac{2x_0+1}{ax_0-3}&=-1\\ 2x_0+1&=-ax_0+3\\ ax_0&=-2x_0+2 \end{aligned}\)
\(\begin{aligned} \dfrac{3x_0+1}{ax_0-2}&=-1\\ 3x_0+1&=-ax_0+2\\ ax_0&=-3x_0+1\\ -2x_0+2&=-3x_0+1\\ x_0&=-1 \end{aligned}\)
\(\begin{aligned} ax_0&=-2x_0+2\\ a(-1)&=-2(-1)+2\\ -a&=4\\ a&=-4 \end{aligned}\)
\(\begin{aligned} x_0+a&=-1+(-4)\\ &=\boxed{\boxed{-5}} \end{aligned}\)
Jadi, nilai x0 + a adalah −5.
JAWAB: C
JAWAB: C
No. 3
Jika \((f\circ g)(x)=\dfrac{6x+3}{2x-5}\) dan- 72 ln 2 − 3
- 36 ln 3 − 2
- 36 ln 2 − 6
- 36 ln 2 − 3
- 72 ln 3 − 2
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
(f\circ g)(x)&=\dfrac{6x+3}{2x-5}\\[10pt]
f(g(x))&=\dfrac{12x+6}{4x-10}\\[10pt]
f(4x-11)&=\dfrac{3(4x-11)+39}{4x-11+1}\\[10pt]
f(x)&=\dfrac{3x+39}{x+1}\\[10pt]
f^{-1}(x)&=\dfrac{-x+39}{x-3}\\[10pt]
f^{-1}(x-1)&=\dfrac{-(x-1)+39}{x-1-3}\\[10pt]
&=\dfrac{-x+1+39}{x-4}\\[10pt]
&=\dfrac{-x+40}{x-4}
\end{aligned}\)
\(\begin{aligned} \displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\ &=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\ &=\left[-x+36\ln|x-4|\right]_5^8\\ &=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\ &=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\ &=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\ &=\left[-8+72\ln2\right]-\left[-5\right]\\ &=-8+72\ln2+5\\ &=\boxed{\boxed{72\ln2-3}} \end{aligned}\)
\(\begin{aligned} \displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\ &=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\ &=\left[-x+36\ln|x-4|\right]_5^8\\ &=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\ &=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\ &=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\ &=\left[-8+72\ln2\right]-\left[-5\right]\\ &=-8+72\ln2+5\\ &=\boxed{\boxed{72\ln2-3}} \end{aligned}\)
Jadi, \(\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx=72\ln2-3\).
JAWAB: A
JAWAB: A
No. 4
Jika fungsi f dan g mempunyai invers dan memenuhi- 3g−1(x) + 12
- 3g−1(x) + 10
- 3g−1(x) + 8
- 3g−1(x) + 6
- 3g−1(x) + 4
ALTERNATIF PENYELESAIAN
Misal f (3x) =g(x − 2) = k
\(\begin{aligned} g(x-2)&=k\\ x-2&=g^{-1}(k)\\ x&=g^{-1}(k)+2 \end{aligned}\)
\(\begin{aligned} f(3x)&=k\\ f^{-1}(k)&=3x\\ &=3\left(g^{-1}(k)+2\right)\\ &=3g^{-1}(k)+6\\ f^{-1}(x)&=\boxed{\boxed{3g^{-1}(x)+6}} \end{aligned}\)
\(\begin{aligned} g(x-2)&=k\\ x-2&=g^{-1}(k)\\ x&=g^{-1}(k)+2 \end{aligned}\)
\(\begin{aligned} f(3x)&=k\\ f^{-1}(k)&=3x\\ &=3\left(g^{-1}(k)+2\right)\\ &=3g^{-1}(k)+6\\ f^{-1}(x)&=\boxed{\boxed{3g^{-1}(x)+6}} \end{aligned}\)
Jadi, f −1(x) = 3g−1(x) + 6 .
JAWAB: D
JAWAB: D
No. 5
Diberikan fungsi- 2
- \(\dfrac12\)
- 1
- 4
- \(\dfrac14\)
ALTERNATIF PENYELESAIAN
CARA 1
Misal\(\begin{aligned} 2x&=2^p\\ x&=\dfrac{2^p}2\\ &=2^{p-1} \end{aligned}\)
\(\begin{aligned} f\left({^2\negmedspace\log}2x\right)&=3x+1\\ f(p)&=3\cdot2^{p-1}+1\\ f(x)&=3\cdot2^{x-1}+1\\ y&=3\cdot2^{x-1}+1\\ y-1&=3\cdot2^{x-1}\\ \dfrac{y-1}3&=2^{x-1}\\[8pt] {^2\negmedspace\log}\dfrac{y-1}3&=x-1\\[8pt] {^2\negmedspace\log}\dfrac{y-1}3+1&=x\\[8pt] x&={^2\negmedspace\log}\dfrac{y-1}3+1\\[8pt] f^{-1}(x)&={^2\negmedspace\log}\dfrac{x-1}3+1\\[8pt] f^{-1}(7)&={^2\negmedspace\log}\dfrac{7-1}3+1\\[8pt] &={^2\negmedspace\log}\dfrac63+1\\[8pt] &={^2\negmedspace\log}2+1\\[8pt] &=1+1\\ &=\boxed{\boxed{2}} \end{aligned}\)
CARA CEPAT
\(\begin{aligned} f\left({^2\negmedspace\log2x}\right)&=3x+1\\ f^{-1}(3x+1)&={^2\negmedspace\log2x} \end{aligned}\)\(\begin{aligned} 3x+1&=7\\ 3x&=6\\ x&=2 \end{aligned}\)
\(\begin{aligned} f^{-1}(7)&={^2\negmedspace\log}2(2)\\ &={^2\negmedspace\log}4\\ &=\boxed{\boxed{2}} \end{aligned}\)
Jadi, f −1(7) = 2 .
JAWAB: A
JAWAB: A
No. 6
Fungsi- \({^2\negmedspace\log\sqrt[3]{2x}}\)
- 2log (2x)3
- 2log (2x + 4)
- 2log 2x
- 2log (2x + 2)
ALTERNATIF PENYELESAIAN
\(\eqalign{
f(x)& = 2^{3x-1}\\
3x-1&={^2\negmedspace\log f(x)}\\
3x&={^2\negmedspace\log f(x)}+1\\
x&=\dfrac{{^2\negmedspace\log f(x)}+1}3\\
f^{-1}(x)&=\dfrac{{^2\negmedspace\log x}+1}3
}\)
\(\eqalign{ \left(f^{-1}\circ g\right)(x)&=f^{-1} \left(g(x)\right)\\ &=f^{-1} \left(4(x + 2)^3\right)\\ &=\dfrac{{^2\negmedspace\log \left(4(x + 2)^3\right)}+1}3\\ &=\dfrac{{^2\negmedspace\log4}+ {^2\negmedspace\log(x + 2)^3}+1}3\\ &=\dfrac{2+ 3\ {^2\negmedspace\log(x + 2)}+1}3\\ &=\dfrac{3\ {^2\negmedspace\log(x + 2)}+3}3\\ &={^2\negmedspace\log(x + 2)}+1\\ &={^2\negmedspace\log(x + 2)}+{^2\negmedspace\log2}\\ &={^2\negmedspace\log(x + 2)2}\\ &=\boxed{\boxed{^2\negmedspace\log(2x + 4)}} }\)
\(\eqalign{ \left(f^{-1}\circ g\right)(x)&=f^{-1} \left(g(x)\right)\\ &=f^{-1} \left(4(x + 2)^3\right)\\ &=\dfrac{{^2\negmedspace\log \left(4(x + 2)^3\right)}+1}3\\ &=\dfrac{{^2\negmedspace\log4}+ {^2\negmedspace\log(x + 2)^3}+1}3\\ &=\dfrac{2+ 3\ {^2\negmedspace\log(x + 2)}+1}3\\ &=\dfrac{3\ {^2\negmedspace\log(x + 2)}+3}3\\ &={^2\negmedspace\log(x + 2)}+1\\ &={^2\negmedspace\log(x + 2)}+{^2\negmedspace\log2}\\ &={^2\negmedspace\log(x + 2)2}\\ &=\boxed{\boxed{^2\negmedspace\log(2x + 4)}} }\)
Jadi, (f −1 ∘ g)(x) = 2log (2x + 4) .
JAWAB: C
JAWAB: C
No. 7
DiketahuiNilai \(\displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h=\) ....
- 4
- 5
- 6
- 7
- 8
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
f^{-1}(11)&=2\\
f(2)&=11\\
2a+b&=11
\end{aligned}\)
\(\begin{aligned} f^{-1}(8)&=1\\ f(1)&=8\\ a+b&=8 \end{aligned}\)
\(\begin{aligned} 2a+b&=11\\ a+b&=8\qquad-\\\hline a&=3 \end{aligned}\)
\(\begin{aligned} a+b&=8\\ 3+b&=8\\ b&=5 \end{aligned}\)
f (x) = 3x + 5
\(\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(3(3)+5)-3(3(3+h)+5)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{(3+h)(9+5)-3(9+3h+5)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{(3+h)(14)-3(14+3h)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{42+14h-42+9h}h\\ &=\displaystyle\lim_{h\to0}\dfrac{5h}h\\ &=\displaystyle\lim_{h\to0}5\\ &=\boxed{\boxed{5}} \end{aligned}\)
\(\begin{aligned} f^{-1}(8)&=1\\ f(1)&=8\\ a+b&=8 \end{aligned}\)
\(\begin{aligned} 2a+b&=11\\ a+b&=8\qquad-\\\hline a&=3 \end{aligned}\)
\(\begin{aligned} a+b&=8\\ 3+b&=8\\ b&=5 \end{aligned}\)
\(\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(3(3)+5)-3(3(3+h)+5)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{(3+h)(9+5)-3(9+3h+5)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{(3+h)(14)-3(14+3h)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{42+14h-42+9h}h\\ &=\displaystyle\lim_{h\to0}\dfrac{5h}h\\ &=\displaystyle\lim_{h\to0}5\\ &=\boxed{\boxed{5}} \end{aligned}\)
Jadi, \(\displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h=5\).
JAWAB: B
JAWAB: B
No. 8
Diketahui fungsi- 5
- 4
- 3
- 2
- 1
ALTERNATIF PENYELESAIAN
Misal f −1(14) = x
\(\eqalign{ f(x)&=14\\ x^2 + 2x + 11&=14\\ x^2+2x-3&=0\\ (x+3)(x-1)&=0 }\)
x = −3 atau x = 1
\(\eqalign{ f(x)&=14\\ x^2 + 2x + 11&=14\\ x^2+2x-3&=0\\ (x+3)(x-1)&=0 }\)
Jadi, nilai dari f −1(14)
adalah 1.
JAWAB: E
JAWAB: E
Post a Comment