HOTS Zone : Cauchy Schwarz
Table of Contents
Tipe:
No.
Diberikan bilangan real x dan y sehingga memenuhi persamaanALTERNATIF PENYELESAIAN
\(\begin{aligned}
4x^2+y^2&=4x^2-2y+7\\
4x^2-4x+y^2+2y&=7\\
(2x-1)^2+(y+1)^2&=3^2
\end{aligned}\)
Misal
\(2x-1=a\longrightarrow x=\dfrac{a+1}2\)
\(y+1=b\longrightarrow y=b-1\)
\(\begin{aligned} 5x+6y&=5\cdot\dfrac{a+1}2+6(b-1)\\[3.8pt] &=\dfrac{5a+5}2+6b-6\\[3.8pt] &=\dfrac{5a+12b-7}2 \end{aligned}\)
Misal
\(2x-1=a\longrightarrow x=\dfrac{a+1}2\)
\(y+1=b\longrightarrow y=b-1\)
\(\begin{aligned} 5x+6y&=5\cdot\dfrac{a+1}2+6(b-1)\\[3.8pt] &=\dfrac{5a+5}2+6b-6\\[3.8pt] &=\dfrac{5a+12b-7}2 \end{aligned}\)
\(\begin{aligned}
(5a+12b)^2&\leq(5^2+12^2)(a^2+b^2)\\
&\leq(13^2)(3^2)\\
&\leq39^2
\end{aligned}\)
\(\begin{array}{rcccl} -39&\leq&5a+12b&\leq&39\\ -39&\leq&5(2x-1)+12(y+1)&\leq&39\\ -39&\leq&10x-5+12y+12&\leq&39\\ -39&\leq&10x+12y+7&\leq&39\\ -46&\leq&10x+12y&\leq&32\\ -23&\leq&5x+6y&\leq&16 \end{array}\)
\(\begin{aligned} |A|+|B|&=|16|+|-23|\\ &=\boxed{\boxed{39}} \end{aligned}\)
\(\begin{array}{rcccl} -39&\leq&5a+12b&\leq&39\\ -39&\leq&5(2x-1)+12(y+1)&\leq&39\\ -39&\leq&10x-5+12y+12&\leq&39\\ -39&\leq&10x+12y+7&\leq&39\\ -46&\leq&10x+12y&\leq&32\\ -23&\leq&5x+6y&\leq&16 \end{array}\)
\(\begin{aligned} |A|+|B|&=|16|+|-23|\\ &=\boxed{\boxed{39}} \end{aligned}\)
Jadi, |A| + |B| = 39 .
No.
Misalkan m merupakan nilai terbesar dari z yang memenuhiALTERNATIF PENYELESAIAN
\(\begin{aligned}
x^2+y^2+z^2&=(x+y+z)^2-2(xy+xz+yz)\\
&=5^2-2(3)\\
&=25-6\\
&=19
\end{aligned}\)
Dengan menggunakan Cauchy Schwarz Inequality,
\(\begin{aligned} \left(x^2+y^2\right)\left(1^2+1^2\right)&\geq(x+y)^2\\ \left(19-z^2\right)\left(2\right)&\geq(5-z)^2\\ 38-2z^2&\geq25-10z+z^2\\ 3z^2-10z-13&\leq0\\ (3z-13)(z+1)&\leq0 \end{aligned}\)
\(-1\leq z\leq \dfrac{13}3\)
p = 13, q = 3,
p + q = 13 + 3 = 16
Dengan menggunakan Cauchy Schwarz Inequality,
\(\begin{aligned} \left(x^2+y^2\right)\left(1^2+1^2\right)&\geq(x+y)^2\\ \left(19-z^2\right)\left(2\right)&\geq(5-z)^2\\ 38-2z^2&\geq25-10z+z^2\\ 3z^2-10z-13&\leq0\\ (3z-13)(z+1)&\leq0 \end{aligned}\)
\(-1\leq z\leq \dfrac{13}3\)
p = 13, q = 3,
Jadi, p + q = 16 .
Post a Comment