HOTS Zone : Fungsi Kuadrat (Parabola)
Table of Contents
Tipe:
No.
Titik- 7
- 5
- 1
- −1
- −5
ALTERNATIF PENYELESAIAN
\begin{aligned}
y&=bx^2+\left(1-b^2\right)x-56\\
b&=ba^2+\left(1-b^2\right)a-56\\
56&=ba^2+a-b^2a-b\\
56&=a^2b+-ab^2+a-b\\
56&=ab(a-b)+a-b\\
56&=ab(7)+7\\
49&=7ab\\
ab&=\boxed{\boxed{7}}
\end{aligned}
Jadi, nilai ab adalah 7.
JAWAB: A
JAWAB: A
No.
Fungsi kuadratx2 − 2x + 2 ≤ P(x) ≤ 2x2 − 4x + 3
untuk setiap bilangan real x. Jika ALTERNATIF PENYELESAIAN
\(\begin{array}{rcccl}
x^2-2x+2&\leq &P(x)&\leq&2x^2-4x+3\\
x^2-2x+1+1&\leq &P(x)&\leq&2x^2-4x+2+1\\
(x-1)^2+1&\leq &P(x)&\leq&2\left(x^2-2x+1\right)+1\\
(x-1)^2+1&\leq &P(x)&\leq&2(x-1)^2+1\\
(x-1)^2&\leq &P(x)-1&\leq&2(x-1)^2
\end{array}\)
Sehingga,
\(\eqalign{ P(x)-1&=a(x-1)^2\\ P(x)&=a(x-1)^2+1 }\)
dengan1 ≤ a ≤ 2
\(\eqalign{ P(11)&=181\\ a(11-1)^2+1&=181\\ a(10)^2&=180\\ 100a&=180\\ a&=\dfrac{180}{100}\\ &=\dfrac95 }\)
\(\eqalign{ P(x)-1&=a(x-1)^2\\ P(x)&=a(x-1)^2+1 }\)
dengan
\(\eqalign{ P(11)&=181\\ a(11-1)^2+1&=181\\ a(10)^2&=180\\ 100a&=180\\ a&=\dfrac{180}{100}\\ &=\dfrac95 }\)
\(\eqalign{
P(16)&=\dfrac95(16-1)^2+1\\
&=\dfrac95(15)^2+1\\
&=\dfrac95(225)+1\\
&=405+1\\
&=\boxed{\boxed{406}}
}\)
Jadi, nilai dari P(16) = 406 .
No.
Diberikan fungsi kuadratALTERNATIF PENYELESAIAN
Jadi, nilai dari \(\dfrac{c-b}{a-1}\) adalah 39.
No.
Diberikan fungsi kuadratALTERNATIF PENYELESAIAN
Kita lihat bahwa f(5) = 25 = 52 dan f(6) = 36 = 62 , sehingga f(x) bisa ditulis:
\(\begin{aligned} f(x)&=p(x-5)(x-6)+x^2\\ ax^2+bx+c&=p\left(x^2-11x+30\right)+x^2\\ ax^2+bx+c&=px^2-11px+30p+x^2\\ ax^2+bx+c&=(p+1)x^2-11px+30p \end{aligned}\)
a = p + 1,b = −11p, c = 30p
\(\begin{aligned} \dfrac{c-b}{a-1}&=\dfrac{30p-(-11p)}{p+1-1}\\[4pt] &=\dfrac{41p}{p}\\ &=\boxed{\boxed{41}} \end{aligned}\)
\(\begin{aligned} f(x)&=p(x-5)(x-6)+x^2\\ ax^2+bx+c&=p\left(x^2-11x+30\right)+x^2\\ ax^2+bx+c&=px^2-11px+30p+x^2\\ ax^2+bx+c&=(p+1)x^2-11px+30p \end{aligned}\)
a = p + 1,
\(\begin{aligned} \dfrac{c-b}{a-1}&=\dfrac{30p-(-11p)}{p+1-1}\\[4pt] &=\dfrac{41p}{p}\\ &=\boxed{\boxed{41}} \end{aligned}\)
Jadi, \(\dfrac{c-b}{a-1}=41\).
No.
Untuk nilai a yang manakah garis lurus- 7
- 8
- 9
- 10
- 11
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
6x&=x^2+a\\
x^2-6x+a&=0
\end{aligned}\)
Agar memotong di satu titik atau menyinggung maka:
\(\begin{aligned} D&=0\\ (-6)^2-4(1)(a)&=0\\ 36-4a&=0\\ a&=\boxed{\boxed{9}} \end{aligned}\)
Agar memotong di satu titik atau menyinggung maka:
\(\begin{aligned} D&=0\\ (-6)^2-4(1)(a)&=0\\ 36-4a&=0\\ a&=\boxed{\boxed{9}} \end{aligned}\)
Jadi, a = 9.
JAWAB: C
JAWAB: C
No.
Nilai minimum fungsi- 2
- 3
- 4
- 5
- 6
ALTERNATIF PENYELESAIAN
Nilai minimum dari (x − p)2 + q adalah q, sehingga b2 + b = 3.
f(x) = (x − 3a)2 + 3
Untuk x = 1,
\(\begin{aligned} (1-3a)^2+3&=10(1)+18\\ (1-3a)^2+3&=28\\ (1-3a)^2&=25\\ 1-3a&=\pm5\\ 3a&=1\pm5 \end{aligned}\)
Untuk x = 1,
\(\begin{aligned} (1-3a)^2+3&=10(1)+18\\ (1-3a)^2+3&=28\\ (1-3a)^2&=25\\ 1-3a&=\pm5\\ 3a&=1\pm5 \end{aligned}\)
- 3a = 1 + 5
\(\begin{aligned} 3a&=6\\ a&=2 \end{aligned}\)
- 3a = 1 − 5
\(\begin{aligned} 3a&=-4\\ a&=-\dfrac42\ (TM) \end{aligned}\)
Jadi, a + b + b2 = 5 .
JAWAB: D
JAWAB: D
Post a Comment