HOTS Zone : Bentuk Akar [2]
Table of Contents

Tipe:
No.
\(\sqrt{5050^2-4950^2}=\) ....- 10
- 100
- 1000
- 10000
- 100000
ALTERNATIF PENYELESAIAN
\begin{aligned}
\sqrt{5050^2-4950^2}&=\sqrt{(5050+4950)(5050-4950)}\\
&=\sqrt{(10000)(100)}\\
&=\sqrt{1000000}\\
&=\boxed{\boxed{1000}}
\end{aligned}
Jadi, \(\sqrt{5050^2-4950^2}=1000\).
JAWAB: C
JAWAB: C
No.
Nilai dari \(\sqrt{1+68\cdot69\cdot70\cdot71}=\) ....ALTERNATIF PENYELESAIAN
Misal x = 70.
\begin{aligned}
\sqrt{1+68\cdot69\cdot70\cdot71}&=\sqrt{1+(x-2)(x-1)x(x+1)}\\
&=\sqrt{1+\left((x-2)(x+1)\right)\left(x(x-1)\right)}\\
&=\sqrt{1+\left(x^2-x-2\right)\left(x^2-x\right)}
\end{aligned}
Misal p = x2 − x
\begin{aligned}
\sqrt{1+68\cdot69\cdot70\cdot71}&=\sqrt{1+(p-2)p}\\
&=\sqrt{1+p^2-2p}\\
&=\sqrt{(p-1)^2}\\
&=p-1\\
&=x^2-x-1\\
&=70^2-70-1\\
&=\boxed{\boxed{4829}}
\end{aligned}
Jadi, \(\sqrt{1+68\cdot69\cdot70\cdot71}=4829\).
No.
$$\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}+30^{1554}}{7^{1554}+42^{1554}}}=....$$ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}+30^{1554}}{7^{1554}+42^{1554}}}&=\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}+5^{1554}\cdot6^{1554}}{7^{1554}+7^{1554}\cdot6^{1554}}}\\[4pt]
&=\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}\left(1+6^{1554}\right)}{7^{1554}\left(1+6^{1554}\right)}}\\[4pt]
&=\dfrac{7^{777}}{5^{777}}\times\dfrac{5^{777}}{7^{777}}\\
&=\color{blue}\boxed{\boxed{\color{black}1}}
\end{aligned}\)
Jadi, $\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}+30^{1554}}{7^{1554}+42^{1554}}}=1$.
No.
Selisih nilai x terbesar dan terkecil yang memenuhi persamaan $\sqrt{x-1}+\sqrt{x+1}=\sqrt{3x}$ adalah ....- 2
- $\dfrac23\sqrt3$
- $\sqrt3$
- $\dfrac43\sqrt3$
- $2\sqrt3$
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\sqrt{x-1}+\sqrt{x+1}&=\sqrt{3x}\\
x-1+2\sqrt{x^2-1}+x+1&=3x\\
2\sqrt{x^2-1}&=x\\
4\left(x^2-1\right)&=x^2\\
3x^2-4&=0\\
x^2&=\dfrac43\\[4pt]
x&=\pm\sqrt{\dfrac43}\\
&=\pm\dfrac23\sqrt3
\end{aligned}\)
$\dfrac23\sqrt3-\left(-\dfrac23\sqrt3\right)=\color{blue}\boxed{\boxed{\color{black}\dfrac43\sqrt3}}$
$\dfrac23\sqrt3-\left(-\dfrac23\sqrt3\right)=\color{blue}\boxed{\boxed{\color{black}\dfrac43\sqrt3}}$
Jadi, Selisih nilai x terbesar dan terkecil yang memenuhi persamaan $\sqrt{x-1}+\sqrt{x+1}=\sqrt{3x}$ adalah $\dfrac43\sqrt3$.
JAWAB: D
JAWAB: D
No.
Diketahui bahwa selisih bentuk $$\sqrt{57-40\sqrt2}-\sqrt{57+40\sqrt2}$$ merupakan bilangan bulat, tentukan bilangan bulat tersebut.ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\sqrt{57-40\sqrt2}-\sqrt{57+40\sqrt2}&=\sqrt{57-2\sqrt{800}}-\sqrt{57+2\sqrt{800}}\\
&=\sqrt{32+25-2\sqrt{32\cdot25}}-\sqrt{32+25+2\sqrt{32\cdot25}}\\
&=\left(\sqrt{32}-\sqrt{25}\right)-\left(\sqrt{32}+\sqrt{25}\right)\\
&=\sqrt{32}-5-\sqrt{32}-5\\
&=\color{blue}\boxed{\boxed{\color{black}-10}}
\end{aligned}\)
Jadi, bilangan bulat tersebut adalah −10.
No.
Nilai dari ekspresi $\dfrac{\sqrt{5^{2015}}}{\sqrt{5^{2015}}-\sqrt{5^{2013}}}$ adalah ....- $\dfrac{\sqrt5}4$
- $\dfrac{\sqrt5}2$
- $\dfrac54$
- $\dfrac52$
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac{\sqrt{5^{2015}}}{\sqrt{5^{2015}}-\sqrt{5^{2013}}}{\color{red}\cdot\dfrac{\sqrt{5^{2015}}+\sqrt{5^{2013}}}{\sqrt{5^{2015}}+\sqrt{5^{2013}}}}&=\dfrac{5^{2015}+\sqrt{5^{4028}}}{5^{2015}-5^{2013}}\\[4pt]
&=\dfrac{5^{2015}+5^{2014}}{5^{2015}-5^{2013}}\\[4pt]
&=\dfrac{5^{2013}\left(5^2+5\right)}{5^{2013}\left(5^2-1\right)}\\[4pt]
&=\dfrac{30}{24}\\
&=\color{blue}\boxed{\boxed{\color{black}\dfrac54}}
\end{aligned}\)
Jadi, nilai dari ekspresi $\dfrac{\sqrt{5^{2015}}}{\sqrt{5^{2015}}-\sqrt{5^{2013}}}$ adalah $\dfrac54$.
JAWAB: C
JAWAB: C
Post a Comment