HOTS Zone : Bentuk Akar [2]

Table of Contents
Berikut ini adalah kumpulan soal mengenai Bentuk Akar. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:

No.

\(\sqrt{5050^2-4950^2}=\) ....
  1. 10
  2. 100
  3. 1000
  1. 10000
  2. 100000
ALTERNATIF PENYELESAIAN
\begin{aligned} \sqrt{5050^2-4950^2}&=\sqrt{(5050+4950)(5050-4950)}\\ &=\sqrt{(10000)(100)}\\ &=\sqrt{1000000}\\ &=\boxed{\boxed{1000}} \end{aligned}
Jadi, \(\sqrt{5050^2-4950^2}=1000\).
JAWAB: C

No.

Nilai dari \(\sqrt{1+68\cdot69\cdot70\cdot71}=\) ....
ALTERNATIF PENYELESAIAN
Misal x = 70. \begin{aligned} \sqrt{1+68\cdot69\cdot70\cdot71}&=\sqrt{1+(x-2)(x-1)x(x+1)}\\ &=\sqrt{1+\left((x-2)(x+1)\right)\left(x(x-1)\right)}\\ &=\sqrt{1+\left(x^2-x-2\right)\left(x^2-x\right)} \end{aligned} Misal p = x2x \begin{aligned} \sqrt{1+68\cdot69\cdot70\cdot71}&=\sqrt{1+(p-2)p}\\ &=\sqrt{1+p^2-2p}\\ &=\sqrt{(p-1)^2}\\ &=p-1\\ &=x^2-x-1\\ &=70^2-70-1\\ &=\boxed{\boxed{4829}} \end{aligned}
Jadi, \(\sqrt{1+68\cdot69\cdot70\cdot71}=4829\).

No.

$$\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}+30^{1554}}{7^{1554}+42^{1554}}}=....$$
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}+30^{1554}}{7^{1554}+42^{1554}}}&=\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}+5^{1554}\cdot6^{1554}}{7^{1554}+7^{1554}\cdot6^{1554}}}\\[4pt] &=\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}\left(1+6^{1554}\right)}{7^{1554}\left(1+6^{1554}\right)}}\\[4pt] &=\dfrac{7^{777}}{5^{777}}\times\dfrac{5^{777}}{7^{777}}\\ &=\color{blue}\boxed{\boxed{\color{black}1}} \end{aligned}\)
Jadi, $\dfrac{7^{777}}{5^{777}}\times\sqrt{\dfrac{5^{1554}+30^{1554}}{7^{1554}+42^{1554}}}=1$.

No.

Selisih nilai x terbesar dan terkecil yang memenuhi persamaan $\sqrt{x-1}+\sqrt{x+1}=\sqrt{3x}$ adalah ....
  1. 2
  2. $\dfrac23\sqrt3$
  1. $\sqrt3$
  2. $\dfrac43\sqrt3$
  1. $2\sqrt3$
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \sqrt{x-1}+\sqrt{x+1}&=\sqrt{3x}\\ x-1+2\sqrt{x^2-1}+x+1&=3x\\ 2\sqrt{x^2-1}&=x\\ 4\left(x^2-1\right)&=x^2\\ 3x^2-4&=0\\ x^2&=\dfrac43\\[4pt] x&=\pm\sqrt{\dfrac43}\\ &=\pm\dfrac23\sqrt3 \end{aligned}\)

$\dfrac23\sqrt3-\left(-\dfrac23\sqrt3\right)=\color{blue}\boxed{\boxed{\color{black}\dfrac43\sqrt3}}$
Jadi, Selisih nilai x terbesar dan terkecil yang memenuhi persamaan $\sqrt{x-1}+\sqrt{x+1}=\sqrt{3x}$ adalah $\dfrac43\sqrt3$.
JAWAB: D

No.

Diketahui bahwa selisih bentuk $$\sqrt{57-40\sqrt2}-\sqrt{57+40\sqrt2}$$ merupakan bilangan bulat, tentukan bilangan bulat tersebut.
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \sqrt{57-40\sqrt2}-\sqrt{57+40\sqrt2}&=\sqrt{57-2\sqrt{800}}-\sqrt{57+2\sqrt{800}}\\ &=\sqrt{32+25-2\sqrt{32\cdot25}}-\sqrt{32+25+2\sqrt{32\cdot25}}\\ &=\left(\sqrt{32}-\sqrt{25}\right)-\left(\sqrt{32}+\sqrt{25}\right)\\ &=\sqrt{32}-5-\sqrt{32}-5\\ &=\color{blue}\boxed{\boxed{\color{black}-10}} \end{aligned}\)
Jadi, bilangan bulat tersebut adalah −10.

No.

Nilai dari ekspresi $\dfrac{\sqrt{5^{2015}}}{\sqrt{5^{2015}}-\sqrt{5^{2013}}}$ adalah ....
  1. $\dfrac{\sqrt5}4$
  2. $\dfrac{\sqrt5}2$
  1. $\dfrac54$
  2. $\dfrac52$
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \dfrac{\sqrt{5^{2015}}}{\sqrt{5^{2015}}-\sqrt{5^{2013}}}{\color{red}\cdot\dfrac{\sqrt{5^{2015}}+\sqrt{5^{2013}}}{\sqrt{5^{2015}}+\sqrt{5^{2013}}}}&=\dfrac{5^{2015}+\sqrt{5^{4028}}}{5^{2015}-5^{2013}}\\[4pt] &=\dfrac{5^{2015}+5^{2014}}{5^{2015}-5^{2013}}\\[4pt] &=\dfrac{5^{2013}\left(5^2+5\right)}{5^{2013}\left(5^2-1\right)}\\[4pt] &=\dfrac{30}{24}\\ &=\color{blue}\boxed{\boxed{\color{black}\dfrac54}} \end{aligned}\)
Jadi, nilai dari ekspresi $\dfrac{\sqrt{5^{2015}}}{\sqrt{5^{2015}}-\sqrt{5^{2013}}}$ adalah $\dfrac54$.
JAWAB: C

Post a Comment