Exercise Zone : Turunan Fungsi Trigonometri

Table of Contents
Berikut ini adalah kumpulan soal mengenai Turunan Fungsi Trigonometri. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:

StandarSNBTHOTS


No.

Turunan pertama dari f(x) = sin3 (3x2 − 2) adalah
  1. 2 sin2 (3x2 − 2) sin (6x2 − 4)
  2. 18x sin2 (3x2 − 2) cos (3x2 − 2)
  3. 12 sin2 (3x2 − 2) cos (6x2 − 4)
  1. 24 sin3 (3x2 − 2) cos2 (3x2 − 2)
  2. 24 sin3 (3x2 − 2) cos (3x2 − 2)
ALTERNATIF PENYELESAIAN
\(\begin{aligned} f(x)&=\sin^3\left(3x^2-2\right)\\ f'(x)&=3\sin^2\left(3x^2-2\right)\cos\left(3x^2-2\right)\cdot 6x\\ &=\boxed{\boxed{18x\sin^2\left(3x^2-2\right)\cos\left(3x^2-2\right)}} \end{aligned}\)
Jadi, turunan pertama dari f(x) = sin3 (3x2 − 2) adalah 18x sin2 (3x2 − 2) cos (3x2 − 2).
JAWAB: B

No.

Turunan kedua dari fungsi y = cos−1 x adalah y" adalah
  1. \(\dfrac{1-3\cos^2x}{\cos^3x}\)
  2. \(\dfrac{2+\cos^2x}{\cos^3x}\)
  3. \(\dfrac{2-\cos^2x}{\cos^3x}\)
  1. \(\dfrac{2+3\cos^2x}{\cos^3x}\)
  2. \(\dfrac{2-3\cos^2x}{\cos^3x}\)
ALTERNATIF PENYELESAIAN
\(\eqalign{ y&=\cos^{-1}x\\ &=\dfrac1{\cos x}\\ &=\sec x\\ y'&=\tan x\sec x }\)
\(\eqalign{ u&=\tan x\\ u'&=\sec^2x }\)\(\eqalign{ v&=\sec x\\ v'&=\tan x\sec x }\)
\(\eqalign{ y'&=u\cdot v\\ y"&=u'v+uv'\\ &=\sec^2x\sec x+\tan x\tan x\sec x\\ &=\sec^3x+\tan^2x\sec x\\ &=\dfrac1{\cos^3x}+\dfrac{\sin^2x}{\cos^2x}\dfrac1{\cos x}\\ &=\dfrac1{\cos^3x}+\dfrac{\sin^2x}{\cos^3x}\\ &=\dfrac{1+\sin^2x}{\cos^3x}\\ &=\dfrac{1+1-\cos^2x}{\cos^3x}\\ &=\boxed{\boxed{\dfrac{2-\cos^2x}{\cos^3x}}} }\)
Jadi, \(y"=\dfrac{2-\cos^2x}{\cos^3x}\).
JAWAB: C

No.

Turunan kedua dari fungsi f(t) = t sin t adalah f "(t) adalah ....
  1. t sin t + 2 cos t
  2. t sin t − 2 cos t
  3. −2t sin t + cos t
  1. 2t sin t + cos t
  2. t sin t + 2 cos t
ALTERNATIF PENYELESAIAN
\(\eqalign{ u&=t\\ u'&=1 }\)\(\eqalign{ v&=\sin t\\ v'&=\cos t }\)
\(\eqalign{ f(t)&=uv\\ f'(t)&=u'v+uv'\\ &=1\cdot\sin t+t\cos t\\ &=\sin t+t\cos t }\)
\(\eqalign{ u&=t\\ u'&=1 }\)\(\eqalign{ v&=\cos t\\ v'&=-\sin t }\)
\(\eqalign{ f{"}(t)&=\cos t+1\cdot\cos t+t\cdot(-\sin t)\\ &=\cos t+\cos t-t\sin t\\ &=\boxed{\boxed{-t\sin t+2\cos t}} }\)
Jadi, f "(t) = −t sin t + 2 cos t.
JAWAB: E

No.

Turunan kedua dari fungsi y = x cos x adalah y" adalah
  1. x cos x + 2 sin x
  2. x cos x − 2 sin x
  3. x cos x + 2 sin x
  1. x cos x − 2 sin x
  2. x cos x − sin x
ALTERNATIF PENYELESAIAN
\(\eqalign{ u&=x\\ u'&=1 }\)\(\eqalign{ v&=\cos x\\ v'&=-\sin x }\)
\(\eqalign{ y&=uv\\ y'&=u'v+uv'\\ &=1\cdot\cos x+x(-\sin x)\\ &=\cos x-x\sin x }\)
\(\eqalign{ u&=x\\ u'&=1 }\)\(\eqalign{ v&=\sin x\\ v'&=\cos x }\)
\(\eqalign{ y"&=-\sin x-\left(1\cdot\sin x+x\cos x\right)\\ &=-\sin x-\sin x-x\cos x\\ &=\boxed{\boxed{-x\cos x-2\sin x}} }\)
Jadi, y" = −x cos x − 2 sin x.
JAWAB: D

No.

Turunan kedua dari fungsi y = tan2 (3x − 2) adalah
  1. 54 tan2 (3x − 2) sec2 (3x − 2) + 18 sec4 (3x − 2)
  2. 54 tan2 (3x − 2) sec2 (3x − 2) + 18 sec2 (3x − 2)
  3. 36 tan(3x − 2) sec2 (3x − 2) + 18 sec4 (3x − 2)
  1. 18 tan2 (3x − 2) sec2 (3x − 2) + 36 sec4 (3x − 2)
  2. 18 tan(3x − 2) sec2 (3x − 2) + 18 sec4 (3x − 2)
ALTERNATIF PENYELESAIAN
\(\eqalign{ y&=\tan^2(3x-2)\\ y'&=2\tan(3x-2)\sec^2(3x-2)\cdot3\\ &=6\tan(3x-2)\sec^2(3x-2) }\)
\(\eqalign{ u&=6\tan(3x-2)\\ u'&=6\cdot3\sec^2(3x-2)\\ &=18\sec^2(3x-2) }\)\(\eqalign{ v&=\sec^2(3x-2)\\ v'&=2\sec(3x-2)\cdot3\tan(3x-2)\sec(3x-2)\\ &=6\tan(3x-2)\sec^2(3x-2) }\)
\(\eqalign{ y"&=u'v+uv'\\ &=18\sec^2(3x-2)\sec^2(3x-2)+6\tan(3x-2)6\tan(3x-2)\sec^2(3x-2)\\ &=18\sec^4(3x-2)+36\tan^2(3x-2)\sec^2(3x-2)\\ &=\boxed{\boxed{36\tan^2(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}} }\)
Jadi, y" = 36 tan2 (3x − 2) sec2 (3x − 2) + 18 sec4 (3x − 2).
JAWAB: TIDAK ADA PILIHAN JAWABAN

No.

Jika f(x) = 2 sin x + cos x, maka \(f'\left(\dfrac{\pi}2\right)\) adalah...
  1. −2
  2. −1
  3. 0
  1. 1
  2. 2
ALTERNATIF PENYELESAIAN
\(\eqalign{ f(x)&=2\sin x+\cos x\\ f'(x)&=2\cos x-\sin x\\ f'\left(\dfrac{\pi}2\right)&=2\cos\left(\dfrac{\pi}2\right)-\sin\left(\dfrac{\pi}2\right)\\ &=2(0)-1\\ &=\boxed{\boxed{-1}} }\)
Jadi, \(f'\left(\dfrac{\pi}2\right)=-1\).
JAWAB: B

No.

Diketahui f(x) = sin x cos x. Nilai turunan f(x) di titik \(x=\dfrac{\pi}6\) adalah....
  1. \(\dfrac12\sqrt3\)
  2. \(\dfrac12\sqrt2\)
  3. \(\dfrac12\)
  1. \(-\dfrac12\)
  2. \(-\dfrac12\sqrt2\)
ALTERNATIF PENYELESAIAN

CARA 1

\(\eqalign{ u&=\sin x\\ u'&=\cos x }\)\(\eqalign{ v&=\cos x\\ v'&=-\sin x }\)
\(\eqalign{ f'(x)&=u'v+uv'\\ &=\cos x\cos x+\sin x(-\sin x)\\ &=\cos^2x-\sin^2x\\ f'\left(\dfrac{\pi}6\right)&=\cos^2\dfrac{\pi}6-\sin^2\dfrac{\pi}6\\ &=\left(\dfrac12\sqrt3\right)^2-\left(\dfrac12\right)^2\\ &=\dfrac34-\dfrac14\\ &=\dfrac24\\ &=\boxed{\boxed{\dfrac12}} }\)

CARA 2

\(\eqalign{ f(x)&=\sin x\cos x\\ &=\dfrac12\cdot2\sin x\cos x\\ &=\dfrac12\sin2x\\ f'(x)&=\dfrac12\cdot2\cos2x\\ &=\cos2x\\ f'\left(\dfrac{\pi}6\right)&=\cos2\left(\dfrac{\pi}6\right)\\ &=\cos\dfrac{\pi}3\\ &=\boxed{\boxed{\dfrac12}} }\)
Jadi, nilai turunan f(x) di titik \(x=\dfrac{\pi}6\) adalah \(\dfrac12\).
JAWAB: C

No.

Nilai turunan dari \(f(x)=\dfrac{\sin x+\cos x}{\cos x}\) pada \(x=\dfrac{\pi}6\) adalah ....
  1. \(\dfrac13\)
  2. \(\dfrac23\)
  3. 1
  1. \(\dfrac43\)
  2. \(\dfrac53\)
ALTERNATIF PENYELESAIAN

CARA 1

\(\eqalign{ u&=\sin x+\cos x\\ u'&=\cos x-\sin x }\)\(\eqalign{ v&=\cos x\\ v'&=-\sin x }\)
\(\eqalign{ f(x)&=\dfrac{u}v\\ f'(x)&=\dfrac{u'v-uv'}{v^2}\\ &=\dfrac{(\cos x-\sin x)\cos x-(\sin x+\cos x)(-\sin x)}{(\cos x)^2}\\ &=\dfrac{\cos^2 x-\cancel{\sin x\cos x}+\sin^2 x+\cancel{\sin x\cos x}}{\cos^2 x}\\ &=\dfrac1{\cos^2 x}\\ f'\left(\dfrac{\pi}6\right)&=\dfrac1{\cos^2\dfrac{\pi}6}\\ &=\dfrac1{\left(\dfrac12\sqrt3\right)^2}\\ &=\dfrac1{\dfrac34}\\ &=\boxed{\boxed{\dfrac43}} }\)

CARA 2

\(\eqalign{ f(x)&=\dfrac{\sin x+\cos x}{\cos x}\\ &=\dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\cos x}\\ &=\tan x+1\\ f'(x)&=\sec^2x\\ f'\left(\dfrac{\pi}6\right)&=\sec^2\dfrac{\pi}6\\ &=\left(\dfrac2{\sqrt3}\right)^2\\ &=\boxed{\boxed{\dfrac43}} }\)
Jadi, \(f'\left(\dfrac{\pi}6\right)=\dfrac43\).
JAWAB: D

No.

Tentukan turunan pertama fungsi-fungsi berikut.
  1. f(x) = (x + 5) sec (2x − 3)
  2. g(x) = sin 2x cos (x − 9)
ALTERNATIF PENYELESAIAN
  1. f(x) = (x + 5) sec (2x − 3)
    \(\eqalign{ u&=x+5\\ u'&=1 }\)
    \(\eqalign{ v&=\sec(2x-3)\\ v'&=2\tan(2x-3)\sec(2x-3) }\)

    \(\eqalign{ f'(x)&=u'v+uv'\\ &=1\cdot\sec(2x-3)+(x+5)2\tan(2x-3)\sec(2x-3)\\ &=\boxed{\boxed{\sec(2x-3)+2(x+5)\tan(2x-3)\sec(2x-3)}} }\)

  2. g(x) = sin 2x cos (x − 9)
    \(\eqalign{ u&=\sin2x\\ u'&=2\cos2x }\)
    \(\eqalign{ v&=\cos(x-9)\\ v'&=-\sin(x-9) }\)

    \(\eqalign{ g'(x)&=u'v+uv'\\ &=2\cos2x\cos(x-9)+\sin2x\left(-\sin(x-9)\right)\\ &=\boxed{\boxed{2\cos2x\cos(x-9)-\sin2x\sin(x-9)}} }\)
Jadi,
  1. f'(x) = sec (2x − 3) + 2(x + 5) tan (2x − 3) sec (2x − 3)
  2. g'(x) = 2 cos 2x cos (x − 9) − sin 2x sin (x − 9)

No.

Turunan fungsi \(f(x)=2-2\sin\dfrac{\pi x}2\) bernilai nol di x1 dan x2. Jika 0\leq x leq4 dan x1 \gt x2, tentukan nilai x12 + x2
ALTERNATIF PENYELESAIAN
\(\eqalign{ f'(x)&=0-2\cdot\dfrac{\pi}2\cos\dfrac{\pi x}2\\ &=-\pi\cos\dfrac{\pi x}2 }\)

\(\eqalign{ f'(x)&=0\\ -\pi\cos\dfrac{\pi x}2&=0\\ \cos\dfrac{\pi x}2&=0\\ \cos\dfrac{\pi x}2&= \cos\dfrac{\pi}2 }\)
\(\eqalign{ \dfrac{\pi x}2&=\dfrac{\pi}2+2k\pi\ &{\color{red}\times\dfrac2{\pi}}\\ x&=1+4k\\ x&=1 }\)\(\eqalign{ \dfrac{\pi x}2&=-\dfrac{\pi}2+2k\pi\ &{\color{red}\times\dfrac2{\pi}}\\ x&=-1+4k\\ x&=3 }\)
x1 = 3, x2 = 1

\(\eqalign{ {x_1}^2+x_2&=3^2+1\\ &=9+1\\ &=\boxed{\boxed{10}} }\)
Jadi, x12 + x2 = 10.



Post a Comment