HOTS Zone : Trigonometri

Berikut ini adalah kumpulan soal mengenai Trigonometri. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:

No.

Misalkan
sin (sin (5x − 4y) ⋅ sin 4(xy)) = a, dan
cos (cos (5x − 4y) ⋅ cos 4(xy)) = b
dengan \(0\lt y\lt x\lt\dfrac1{20}\pi\). Jika dinyatakan dalam a dan b maka cos (cos x) = ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \sin(\sin(5x-4y)\cdot\sin4(x-y))&=a\\ \sin(5x-4y)\cdot\sin(4x-4y)&=\sin^{-1}a&{\color{red}(1)} \end{aligned}\)

\(\begin{aligned} \cos(\cos(5x-4y)\cdot\cos4(x-y))&=b\\ \cos(5x-4y)\cdot\cos(4x-4y)&=\cos^{-1}b&{\color{red}(2)} \end{aligned}\)

(1) + (2)
\(\begin{aligned} \sin(5x-4y)\cdot\sin(4x-4y)&=\sin^{-1}a\\ \cos(5x-4y)\cdot\cos(4x-4y)&=\cos^{-1}b&{\color{red}+}\\\hline \cos(5x-4y)\cdot\cos(4x-4y)+\sin(5x-4y)\cdot\sin(4x-4y)&=\sin^{-1}a+\cos^{-1}b\\ \cos\left((5x-4y)-(4x-4y)\right)&=\sin^{-1}a+\cos^{-1}b\\ \cos x&=\sin^{-1}a+\cos^{-1}b\\ \cos(\cos x)&=\cos\left(\sin^{-1}a+\cos^{-1}b\right)\\ &=\cos\left(\sin^{-1}a\right)\cdot\cos\left(\cos^{-1}b\right)-\sin\left(\sin^{-1}a\right)\cdot\sin\left(\cos^{-1}b\right)\\ &=\sqrt{1-a^2}\cdotb-a\cdot\sqrt{1-b^2}\\ \end{aligned}\)
Jadi,
JAWAB:


No.

cos2 41° + cos2 43° + cos2 45° + cos2 47° + cos2 49° = ....
  1. 1
  2. 1,5
  3. 2
  1. 2,5
  2. 5
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \cos^2 41\degree + \cos^2 43\degree + \cos^2 45\degree + \cos^2 47\degree + \cos^2 49\degree &=\cos^2 41\degree + \cos^2 43\degree + \left(\dfrac12\sqrt2\right)^2 + \sin^2 43\degree + \sin^2 41\degree\\ &=\cos^2 41\degree+ \sin^2 41\degree + \cos^2 43\degree+ \sin^2 43\degree + \dfrac14\cdot2 \\ &=1+1+\dfrac12\\ &=2{,}5 \end{aligned}\)
Jadi, cos2 41° + cos2 43° + cos2 45° + cos2 47° + cos2 49° = 2,5.
JAWAB: D

No.

Nilai (sin(15°) + sin(75°))2 adalah ....
  1. \(\dfrac{\sqrt3}2\)
  2. \(\dfrac32\)
  3. \(1+\sqrt3\)
  1. \(\dfrac34\)
  2. \(\dfrac23\)
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \left(\sin\left(15°\right)+\sin\left(75°\right)\right)^2&=\sin^2\left(15°\right)+\sin^2\left(75°\right)+2\sin\left(15°\right)\sin\left(75°\right)\\ &=\sin^2\left(15°\right)+\cos^2\left(15°\right)+2\sin\left(15°\right)\cos\left(15°\right)\\ &=1+sin\left(30°\right)\\ &=1+\dfrac12\\ &=\boxed{\boxed{\dfrac32}} \end{aligned}\)
Jadi, \(\left(\sin\left(15°\right)+\sin\left(75°\right)\right)^2=\dfrac32\).
JAWAB: B

No.

Nilai dari $\dfrac{3+\cot76°\cot16°}{\cot76°+\cot16°}$ adalah ....
  1. tan 16°
  2. tan 46°
  1. cot 16°
  2. cot 44°
  1. cot 46°
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \dfrac{3+\cot76°\cot16°}{\cot76°+\cot16°}&=\dfrac{3+\dfrac{\cos76°}{\sin76°}\dfrac{\cos16°}{\sin16°}}{\dfrac{\cos76°}{\sin76°}+\dfrac{\cos16°}{\sin16°}}{\color{red}\cdot\dfrac{\sin76°\sin16°}{\sin76°\sin16°}}\\[4pt] &=\dfrac{3\sin76°\sin16°+\cos76°\cos16°}{\sin16°\cos76°+\cos16°\sin76°}\\[4pt] &=\dfrac{2\sin76°\sin16°+\sin76°\sin16°+\cos76°\cos16°}{\sin\left(16°+76°\right)}\\[4pt] &=\dfrac{\cos\left(76°-16°\right)-\cos\left(76°+16°\right)+\cos\left(76°-16°\right)}{\sin\left(16°+76°\right)}\\[4pt] &=\dfrac{\cos60°-\cos92°+\cos60°}{\sin92°}\\[4pt] &=\dfrac{\dfrac12-\left(1-2\sin^246°\right)+\dfrac12}{2\sin46°\cos46°}\\[4pt] &=\dfrac{2\sin^246°}{2\sin46°\cos46°}\\[4pt] &=\dfrac{\sin46°}{\cos46°}\\ &=\color{blue}\boxed{\boxed{\color{black}\tan46°}} \end{aligned}\)
Jadi, nilai dari $\dfrac{3+\cot76°\cot16°}{\cot76°+\cot16°}$ adalah tan 46°.
JAWAB: B

No.

Jika $\sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\dfrac{3\pi}2$, maka nilai dari $x^{2023}+y^{2023}+z^{2023}+\dfrac{27}{x^{2023}+y^{2023}+z^{2023}}$ adalah ....
  1. 0
  2. 3
  1. 6
  2. 9
  1. 12
ALTERNATIF PENYELESAIAN
Perhatikan bahwa $-\dfrac{\pi}2\leq\sin^{-1}\alpha\leq\dfrac{\pi}2$, sehingga $-\dfrac{3\pi}2\leq\sin^{-1}x+\sin^{-1}y+\sin^{-1}z\leq\dfrac{3\pi}2$. Karena $\sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\dfrac{3\pi}2$, maka $\sin^{-1}x=\sin^{-1}y=\sin^{-1}z=\dfrac{\pi}2$. Didapat
$x=y=z=\sin\dfrac{\pi}2=1$

\(\begin{aligned} x^{2023}+y^{2023}+z^{2023}+\dfrac{27}{x^{2023}+y^{2023}+z^{2023}}&=1^{2023}+1^{2023}+1^{2023}+\dfrac{27}{1^{2023}+1^{2023}+1^{2023}}\\[4pt] &=3+\dfrac{27}3\\[4pt] &=3+9\\ &=\color{blue}\boxed{\boxed{\color{black}12}} \end{aligned}\)
Jadi, nilai dari $x^{2023}+y^{2023}+z^{2023}+\dfrac{27}{x^{2023}+y^{2023}+z^{2023}}$ adalah 12.
JAWAB: E

No.

Jika $\sqrt{\sin^4x+4\cos^2x}-\sqrt{\cos^4x+4\sin^2x}=\dfrac13$, maka nilai 6 cos 2x adalah ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \sqrt{\sin^4x+4\cos^2x}-\sqrt{\cos^4x+4\sin^2x}&=\dfrac13\\[4pt] \sqrt{\sin^4x+4\left(1-\sin^2x\right)}-\sqrt{\cos^4x+4\left(1-\cos^2x\right)}&=\dfrac13\\[4pt] \sqrt{\sin^4x-4\sin^2x+4}-\sqrt{\cos^4x-4\cos^2x+4}&=\dfrac13\\[4pt] \sqrt{\left(\sin^2x-2\right)^2}-\sqrt{\left(\cos^2x-2\right)^2}&=\dfrac13\\[4pt] \left|\sin^2x-2\right|-\left|\cos^2x-2\right|&=\dfrac13 \end{aligned}\)
Perhatikan bahwa sin2 x ≤ 1, dan cos2 x ≤ 1, maka sin2 x − 2 dan cos2 x − 2 bernilai negatif, sehingga
\(\begin{aligned} \left|\sin^2x-2\right|-\left|\cos^2x-2\right|&=\dfrac13\\[4pt] 2-\sin^2x-\left(2-\cos^2x\right)&=\dfrac13\\[4pt] 2-\sin^2x-2+\cos^2x&=\dfrac13\\[4pt] \cos^2x-\sin^2x&=\dfrac13\\[4pt] \cos2x&=\dfrac13\\ 6\cos2x&=\color{blue}\boxed{\boxed{\color{black}2}} \end{aligned}\)
Jadi, nilai 6 cos 2x adalah 2.

No.

Jika $\sin A=\sqrt{2pq}$ dan $\tan A=\dfrac{2pq}{p-q}$, maka p2 + q2 = ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \tan A&=\dfrac{2pq}{p-q}\\[4pt] \dfrac{\sin A}{\cos A}&=\dfrac{2pq}{p-q}\\[4pt] \dfrac{\sqrt{2pq}}{\cos A}&=\dfrac{2pq}{p-q}\\[4pt] \cos A&=p-q \end{aligned}\)

\(\begin{aligned} \sin^2A+\cos^2A&=1\\ \left(\sqrt{2pq}\right)^2+(p-q)^2&=1\\ 2pq+p^2-2pq+q^2&=1\\ p^2+q^2&=\color{blue}\boxed{\boxed{\color{black}1}} \end{aligned}\)
Jadi, p2 + q2 = 1.

No.

Nilai dari
cos(56°)⋅cos(2⋅56°)⋅cos(22⋅56°)⋯cos(22356°)
adalah ....
  1. 2−24
  2. 2−23
  3. 224
  1. 223
  2. 2−28
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \sin2a&=2\sin a\cos a\\ \cos a&=\dfrac{\sin 2a}{2\sin a} \end{aligned}\)

\(\begin{aligned} \cos\left(56°\right)\cdot\cos\left(2\cdot56°\right)\cdot\cos\left(2^2\cdot56°\right)\cdots\cos\left(2^{23}\cdot56°\right)&=\dfrac{\sin\left(2\cdot56°\right)}{2\sin\left(56°\right)}\cdot\dfrac{\sin\left(2^2\cdot56°\right)}{2\sin\left(2\cdot56°\right)}\cdot\dfrac{\sin\left(2^3\cdot56°\right)}{2\sin\left(2^2\cdot56°\right)}\cdots\dfrac{\sin\left(2^{24}\cdot56°\right)}{2\sin\left(2^{23}\cdot56°\right)}\\[4pt] &=\dfrac{\sin\left(2^{24}\cdot56°\right)}{2^{24}\sin\left(56°\right)} \end{aligned}\)
Kita buktikan bahwa 224⋅56° = 56° + k⋅360°, atau 224⋅56 = 56 mod 360.
\(\begin{aligned} 2^{24}\cdot56\mod360&\equiv8\left(2^{24}\cdot7\mod45\right)\mod360\\ &\equiv8\left(7\mod45\right)\mod360&\ {\color{red}\phi(45)=24}\\ &\equiv56\mod360 \end{aligned}\)

\(\begin{aligned} \dfrac{\sin\left(2^{24}\cdot56°\right)}{2^{24}\sin\left(56°\right)}&=\dfrac{\sin\left(56°\right)}{2^{24}\sin\left(56°\right)}\\[4pt] &=\dfrac1{2^{24}}\\ &=\color{blue}\boxed{\boxed{\color{black}2^{-24}}} \end{aligned}\)
Jadi, cos(56°)⋅cos(2⋅56°)⋅cos(22⋅56°)⋯cos(22356°) = 2−24.
JAWAB: A