SNBT Zone : Persamaan Kuadrat
Table of Contents
Tipe:
No.
Jika m dan n merupakan akar-akar dari persamaan kuadrat- x2 − 17x + 72 = 0
- x2 − 13x + 36 = 0
- x2 − 8x + 16 = 0
- x2 − 5x + 6 = 0
- x2 − 2x + 6 = 0
ALTERNATIF PENYELESAIAN
\(\begin{aligned} m+n&=-\dfrac{b}a\\[4pt] &=-\dfrac{-6}1\\[4pt] &=6 \end{aligned}\)
\(\begin{aligned} mn&=\dfrac{c}a\\[4pt] &=\dfrac21\\[4pt] &=2 \end{aligned}\)
Misal \(p=\left(\dfrac1m+\dfrac1n\right)^{mn}\) dan \(q=(mn)^{\left(\frac1m+\frac1n\right)}\)
\(\begin{aligned} p&=\left(\dfrac1m+\dfrac1n\right)^{mn}\\[4pt] &=\left(\dfrac{m+n}{mn}\right)^{mn}\\[4pt] &=\left(\dfrac{6}{2}\right)^2\\[4pt] &=3^2\\ &=9 \end{aligned}\)
\(\begin{aligned} q&=(mn)^{\left(\frac1m+\frac1n\right)}\\ &=2^3\\ &=8 \end{aligned}\)
Persamaan kuadrat barunya adalah
\(\begin{aligned} x^2-(p+q)x+pq&=0\\ x^2-(9+8)x+9\cdot8&=0\\ x^2-17x+72&=0 \end{aligned}\)
Jadi, persamaan kuadrat baru dengan akar-akar \(\left(\dfrac1m+\dfrac1n\right)^{mn}\) dan \((mn)^{\left(\frac1m+\frac1n\right)}\) adalah x2 − 17x + 72 = 0.
JAWAB: A
JAWAB: A
No.
Salah satu akar persamaan kuadrat- 2
- 1
- −1
- −2
- −3
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
x_1+x_2&=-\dfrac{a+1}a\\[4pt]
x_1+2x_1&=-\dfrac{a+1}a\\[4pt]
3x_1&=-\dfrac{a+1}a\\[4pt]
x_1&=-\dfrac{a+1}{3a}
\end{aligned}\)
\(\begin{aligned} x_1x_2&=\dfrac{a-1}a\\[4pt] x_1\left(2x_1\right)&=\dfrac{a-1}a\\[4pt] 2{x_1}^2&=\dfrac{a-1}a\\[4pt] 2\left(-\dfrac{a+1}{3a}\right)^2&=\dfrac{a-1}a\\[4pt] 2\left(\dfrac{a^2+2a+1}{9a^2}\right)&=\dfrac{a-1}a\\[4pt] 2\left(a^2+2a+1\right)&=9a^2\left(\dfrac{a-1}a\right)\\[4pt] 2a^2+4a+2&=9a(a-1)\\ 2a^2+4a+2&=9a^2-9a\\ 7a^2-13a-2&=0\\ (7a+1)(a-2)&=0 \end{aligned}\)
\(=-\dfrac17\lt0\) (TM) ataua = 2 .
\(\begin{aligned} x_1x_2&=\dfrac{a-1}a\\[4pt] x_1\left(2x_1\right)&=\dfrac{a-1}a\\[4pt] 2{x_1}^2&=\dfrac{a-1}a\\[4pt] 2\left(-\dfrac{a+1}{3a}\right)^2&=\dfrac{a-1}a\\[4pt] 2\left(\dfrac{a^2+2a+1}{9a^2}\right)&=\dfrac{a-1}a\\[4pt] 2\left(a^2+2a+1\right)&=9a^2\left(\dfrac{a-1}a\right)\\[4pt] 2a^2+4a+2&=9a(a-1)\\ 2a^2+4a+2&=9a^2-9a\\ 7a^2-13a-2&=0\\ (7a+1)(a-2)&=0 \end{aligned}\)
\(=-\dfrac17\lt0\) (TM) atau
Jadi, a = 2 .
JAWAB: A
JAWAB: A
No.
Misalkan- −7
- −5
- 0
- 5
- 7
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\dfrac1{x_1}+\dfrac1{x_2}&=-1\\
\dfrac{x_1+x_2}{x_1x_2}&=-1\\
\dfrac{-\dfrac32x_2+x_2}{\left(-\dfrac32x_2\right)x_2}&=-1\\
\dfrac{-\dfrac12x_2}{-\dfrac32{x_2}^2}&=-1\\
\dfrac1{3x_2}&=-1\\
1&=-3x_2\\
x_2&=-\dfrac13
\end{aligned}\)
\(\begin{aligned} x_1&=-\dfrac32x_2\\ &=-\dfrac32\left(-\dfrac13\right)\\ &=\dfrac12 \end{aligned}\)
\(\begin{aligned} (3x+1)(2x-1)&=0\\ 6x^2-x-1&=0 \end{aligned}\)
\(\begin{aligned} p+q&=6+(-1)\\ &=5 \end{aligned}\)
\(\begin{aligned} x_1&=-\dfrac32x_2\\ &=-\dfrac32\left(-\dfrac13\right)\\ &=\dfrac12 \end{aligned}\)
\(\begin{aligned} (3x+1)(2x-1)&=0\\ 6x^2-x-1&=0 \end{aligned}\)
\(\begin{aligned} p+q&=6+(-1)\\ &=5 \end{aligned}\)
Jadi, p + q = 5.
JAWAB: B
JAWAB: B
No.
Hasil jumlah akar-akar persamaan yang dinyatakan dengan \(\begin{vmatrix}2x-2 &x+1 \\x+2 & x\end{vmatrix}=1\) adalah ....ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\begin{vmatrix}2x-2 &x+1 \\x+2 & x\end{vmatrix}&=1\\
2x^2-2x-\left(x^2+2x+2\right)&=1\\
2x^2-2x-x^2-2x-2-1&=0\\
x^2-4x-3&=0
\end{aligned}\)
\(\begin{aligned}
x_1+x_2&=\dfrac{-b}a\\
&=\dfrac{-(-4)}1\\
&=4
\end{aligned}\)
Jadi, hasil jumlah akar-akar persamaan yang dinyatakan dengan \(\begin{vmatrix}2x-2 &x+1 \\x+2 & x\end{vmatrix}=1\) adalah 4.
No.
Akar-akar persamaan kuadrat- x2 − 6x − 10 = 0
- x2 + 6x − 16 = 0
- x2 − 6x + 2 = 0
- x2 + 6x − 4 = 0
- x2 − 4x − 2 = 0
ALTERNATIF PENYELESAIAN
\(\begin{aligned} p+q&=-\dfrac{b}a\\ &=-\dfrac{-2}1\\ &=2 \end{aligned}\)
\(\begin{aligned} 2p+q&=6\\ p+q&=2\qquad-\\\hline p&=4 \end{aligned}\)
\(\begin{aligned} p+q&=2\\ 4+q&=2\\ q&=-2 \end{aligned}\)
\(\begin{aligned}
pq&=(4)(-2)\\
&=-8
\end{aligned}\)
\(\begin{aligned} p+q+pq&=2+(-8)\\ &=-6 \end{aligned}\)
\(\begin{aligned} (p+q)(pq)&=(2)(-8)\\ &=-16 \end{aligned}\)
Persamaan kuadrat barunya,
\(\begin{aligned} x^2-(-6)x+(-16)&=0\\ x^2+6x-16&=0 \end{aligned}\)
\(\begin{aligned} p+q+pq&=2+(-8)\\ &=-6 \end{aligned}\)
\(\begin{aligned} (p+q)(pq)&=(2)(-8)\\ &=-16 \end{aligned}\)
Persamaan kuadrat barunya,
\(\begin{aligned} x^2-(-6)x+(-16)&=0\\ x^2+6x-16&=0 \end{aligned}\)
Jadi, persamaan kuadrat baru yang akar-akarnya pq dan p + q adalah x2 + 6x − 16 = 0.
JAWAB: B
JAWAB: B
No.
Jika x memenuhi persamaan \(\sqrt{\dfrac1{125}}^{(5x)}=\dfrac{5^{(2x-3)}}{\sqrt{5\sqrt{5\sqrt5}}}{\sqrt{\dfrac1{625}}}^{(x-1)}\) dan y memenuhi persamaan- a2 − 2a + 1
- a2 + 2a + 1
- a2 − 4a + 3
- a2 + 10a + 9
- a2 − 10a + 9
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
{\sqrt{\dfrac1{125}}}^{(5x)}&=\dfrac{5^{(2x-3)}}{\sqrt{5\sqrt{5\sqrt5}}}{\sqrt{\dfrac1{625}}}^{(x-1)}\\
{\sqrt{\dfrac1{5^3}}}^{(5x)}&=\dfrac{5^{(2x-3)}}{5^{\frac12}\cdot5^{\frac1{2\cdot2}}\cdot5^{\frac1{2\cdot2\cdot2}}}{\sqrt{\dfrac1{5^4}}}^{(x-1)}\\[10pt]
\sqrt{5^{-3}}^{(5x)}&=\dfrac{5^{(2x-3)}}{5^{\frac12}\cdot5^{\frac14}\cdot5^{\frac18}}\sqrt{5^{-4}}^{(x-1)}\\[10pt]
\left(5^{-\frac32}\right)^{(5x)}&=\dfrac{5^{(2x-3)}}{5^{\frac12+\frac14+\frac18}}\left(5^{-2}\right)^{(x-1)}\\[10pt]
5^{-\frac{15x}2}&=\dfrac{5^{(2x-3)}}{5^{\frac78}}\left(5^{-2x+2}\right)\\[10pt]
5^{-\frac{15x}2}&=5^{(2x-3)-\frac78+(-2x+2)}\\
5^{-\frac{15x}2}&=5^{-\frac{15}8}\\
-\dfrac{15x}2&=-\dfrac{15}8\\
x&=\dfrac14\\
4x&=1
\end{aligned}\)
\(\begin{aligned} ^9\negthinspace\log\left({^3\negthinspace\log y}\right)&={^3\negthinspace\log\left({^9\negthinspace\log y}\right)}\\ ^9\negthinspace\log\left({^3\negthinspace\log y}\right)&={^{3^2}\negthinspace\log\left({^{3^2}\negthinspace\log y}\right)^2}\\ ^9\negthinspace\log\left({^3\negthinspace\log y}\right)&={^9\negthinspace\log\left(\dfrac12{^3\negthinspace\log y}\right)^2}\\ ^3\negthinspace\log y&=\dfrac14\left({^3\negthinspace\log y}\right)^2\\ 1&=\dfrac14{^3\negthinspace\log y}\\ ^3\negthinspace\log y&=4\\ y&=3^4\\ &=81\\ \sqrt{y}&=9 \end{aligned}\)
Persamaan kuadrat yang memiliki akar-akar 1 dan 9 adalah
\(\begin{aligned} (x-1)(x-9)&=0\\ x^2-10x+9&=0 \end{aligned}\)
\(\begin{aligned} ^9\negthinspace\log\left({^3\negthinspace\log y}\right)&={^3\negthinspace\log\left({^9\negthinspace\log y}\right)}\\ ^9\negthinspace\log\left({^3\negthinspace\log y}\right)&={^{3^2}\negthinspace\log\left({^{3^2}\negthinspace\log y}\right)^2}\\ ^9\negthinspace\log\left({^3\negthinspace\log y}\right)&={^9\negthinspace\log\left(\dfrac12{^3\negthinspace\log y}\right)^2}\\ ^3\negthinspace\log y&=\dfrac14\left({^3\negthinspace\log y}\right)^2\\ 1&=\dfrac14{^3\negthinspace\log y}\\ ^3\negthinspace\log y&=4\\ y&=3^4\\ &=81\\ \sqrt{y}&=9 \end{aligned}\)
Persamaan kuadrat yang memiliki akar-akar 1 dan 9 adalah
\(\begin{aligned} (x-1)(x-9)&=0\\ x^2-10x+9&=0 \end{aligned}\)
Jadi, persamaan kuadrat yang memiliki akar-akar 4x dan \(\sqrt{y}\) adalah a2 − 10a + 9.
JAWAB: E
JAWAB: E
No.
Persamaan kuadrat- p ≤ −1
- p ≤ 2
- p ≤ −2 atau p ≥ −1
- −2 < p ≤ −1 atau p ≥ 2
- p < −2 atau −1 ≤ p ≤ 2
ALTERNATIF PENYELESAIAN
Akar riil : D ≥ 0
\(\begin{aligned} D&\geq0\\ b^2-4ac&\geq0\\ (2p)^2-4(1)(p+2)&\geq0\\ 4p^2-4p-8&\geq0\\ p^2-p-2&\geq0\\ (p+1)(p-2)&\geq0 \end{aligned}\)
pembuat nol:p = −1 dan p = 2

Tidak nol dan bertanda sama:
\(\begin{aligned} x_1x_2&\gt0\\ \dfrac{c}a&\gt0\\ \dfrac{p+2}1&\gt0\\ p+2&\gt0\\ p&\gt-2 \end{aligned}\)

iriskan kedua garis bilangan:

−2 < p ≤ −1 atau p ≥ 2
\(\begin{aligned} D&\geq0\\ b^2-4ac&\geq0\\ (2p)^2-4(1)(p+2)&\geq0\\ 4p^2-4p-8&\geq0\\ p^2-p-2&\geq0\\ (p+1)(p-2)&\geq0 \end{aligned}\)
pembuat nol:

Tidak nol dan bertanda sama:
\(\begin{aligned} x_1x_2&\gt0\\ \dfrac{c}a&\gt0\\ \dfrac{p+2}1&\gt0\\ p+2&\gt0\\ p&\gt-2 \end{aligned}\)

iriskan kedua garis bilangan:

Jadi, −2 < p ≤ −1 atau p ≥ 2 .
JAWAB: D
JAWAB: D
No.
Jika jumlah kebalikan akar-akar persamaan- −3
- −1
- \(\dfrac12\)
- 2
- 3
ALTERNATIF PENYELESAIAN
Syarat mempunyai akar real adalah D ≥ 0 .
\(\begin{aligned} D&\geq0\\ (-2)^2-4(1)(-c)&\geq0\\ 4+4c&\geq0\\ 4c&\geq-4\\ c&\geq-1 \end{aligned}\)
Misal akar-akarx2 − 8x + (c − 1) = 0 adalah x1 dan x2.
\(x_1+x_2=-\dfrac{b}a=-\dfrac{-8}1=8\)
\(x_1x_2=\dfrac{c}a=\dfrac{c-1}1=c-1\)
Misal akar-akarx2 − 2x − c = 0 adalah x3 dan x4.
\(x_3+x_4=-\dfrac{b}a=-\dfrac{-2}1=2\)
\(x_3x_4=\dfrac{c}a=\dfrac{-c}1=-c\)
\(\begin{aligned} \dfrac1{x_1}+\dfrac1{x_2}&={x_3}^2+{x_4}^2\\ \dfrac{x_1+x_2}{x_1x_2}&=\left(x_3+x_4\right)^2-2x_3x_4\\ \dfrac8{c-1}&=\left(2\right)^2-2(-c)\\ \dfrac8{c-1}&=4+2c\\ 8&=4c+2c^2-4-2c\\ 8&=2c^2+2c-4\\ 2c^2+2c-12&=0\\ c^2+c-6&=0\\ (c+3)(c-2)&=0 \end{aligned}\)
c = −3 < −1 (TM) atau c = 2
\(\begin{aligned} D&\geq0\\ (-2)^2-4(1)(-c)&\geq0\\ 4+4c&\geq0\\ 4c&\geq-4\\ c&\geq-1 \end{aligned}\)
Misal akar-akar
\(x_1+x_2=-\dfrac{b}a=-\dfrac{-8}1=8\)
\(x_1x_2=\dfrac{c}a=\dfrac{c-1}1=c-1\)
Misal akar-akar
\(x_3+x_4=-\dfrac{b}a=-\dfrac{-2}1=2\)
\(x_3x_4=\dfrac{c}a=\dfrac{-c}1=-c\)
\(\begin{aligned} \dfrac1{x_1}+\dfrac1{x_2}&={x_3}^2+{x_4}^2\\ \dfrac{x_1+x_2}{x_1x_2}&=\left(x_3+x_4\right)^2-2x_3x_4\\ \dfrac8{c-1}&=\left(2\right)^2-2(-c)\\ \dfrac8{c-1}&=4+2c\\ 8&=4c+2c^2-4-2c\\ 8&=2c^2+2c-4\\ 2c^2+2c-12&=0\\ c^2+c-6&=0\\ (c+3)(c-2)&=0 \end{aligned}\)
Jadi, c = 2.
JAWAB: D
JAWAB: D
No.
Agar grafik fungsi- −4 < a < 8
- −8 < a < 4
- a < −8 atau a > −4
- a < 8
- a > −4
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
x^2+2x-5&=2x^2-ax+2a+4\\
x^2-(a+2)x+9&=0
\end{aligned}\)
\(\begin{aligned}
D&\lt0\\
b^2-4ac&\lt0\\
(-(a+2))^2-4(1)(9)&\lt0\\
a^2+4a+4-36&\lt0\\
a^2+4a-32&\lt0\\
(a+8)(a-4)&\lt0\\
\boxed{\boxed{-8\lt a\lt4}}
\end{aligned}\)
Jadi, −8 < a < 4.
JAWAB: B
JAWAB: B
No.
Diketahui x1 dan x2 merupakan akar-akar persamaan- −6
- 2
- 6
- −6 atau 6
- 2 atau 3
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\left(2x_2\right)^2&=x_1\cdot\left(-3x_1x_2\right)\\
4{x_2}^2&=-3{x_1}^2x_2\\
4x_2&=-3{x_1}^2\\
x_2&=-\dfrac34{x_1}^2
\end{aligned}\)
\(\begin{aligned} x_1+x_2&=-\dfrac{b}a\\[8pt] x_1-\dfrac34{x_1}^2&=-\dfrac51\\[8pt] -\dfrac34{x_1}^2+x_1&=-5\\[8pt] -\dfrac34{x_1}^2+x_1+5&=0\\[8pt] 3{x_1}^2-4x_1-20&=0\\ (3x_1-10)(x_1+2)&=0 \end{aligned}\)
\(x_1=\dfrac{10}3\) ataux1 = −2
\(\begin{aligned} x_1+x_2&=-\dfrac{b}a\\[8pt] x_1-\dfrac34{x_1}^2&=-\dfrac51\\[8pt] -\dfrac34{x_1}^2+x_1&=-5\\[8pt] -\dfrac34{x_1}^2+x_1+5&=0\\[8pt] 3{x_1}^2-4x_1-20&=0\\ (3x_1-10)(x_1+2)&=0 \end{aligned}\)
\(x_1=\dfrac{10}3\) atau
- Untuk \(x_1=\dfrac{10}3\),
\(\begin{aligned} x_2&=-\dfrac34{x_1}^2\\[8pt] &=-\dfrac34\left(\dfrac{10}3\right)^2\\[8pt] &=-\dfrac34\left(\dfrac{100}9\right)\\[8pt] &=-\dfrac{25}3 \end{aligned}\)
\(\begin{aligned} r&=\dfrac{2x_2}{x_1}\\[8pt] &=\dfrac{2\left(-\dfrac{25}3\right)}{\dfrac{10}3}{\color{red}\lt0} \end{aligned}\)
kontradiktif - Untuk
x1 = −2 ,
\(\begin{aligned} x_2&=-\dfrac34{x_1}^2\\[8pt] &=-\dfrac34(-2)^2\\[8pt] &=-3 \end{aligned}\)
Jadi, a = 6.
JAWAB: C
JAWAB: C
Post a Comment