HOTS Zone : Segitiga [3]
Table of Contents
Tipe:
No.
Pada suatu segitiga ABC, jika- 15°
- 30°
- 45°
- 60°
- 120°
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
(a+b+c)(b+c-a)&=3bc\\
(b+c+a)(b+c-a)&=3bc\\
(b+c)^2-a^2&=3bc\\
b^2+2bc+c^2-a^2&=3bc\\
b^2+c^2-bc&=a^2\\
b^2+c^2-2bc\cdot\dfrac12&=a^2\\
b^2+c^2-2bc\cdot\cos60°&=a^2\\
\end{aligned}\)
Jadi, besar sudut A adalah 60°.
JAWAB: D
JAWAB: D
No.
Pada segitiga ABC, terdapat titik D pada BC dan E, F pada AC sehingga A, F, E, C berurutan pada garis tersebut, serta memenuhi kondisi:∠BAD = ∠BFD = 40°, ∠ABF = 80°, ∠FEB = 2∠CBE = 2∠EBF
Tentukan besar ∠ACB.
ALTERNATIF PENYELESAIAN
Misalkan $\angle FBE=\angle EBD=\dfrac12\angle FEB=x°$.
Perhatikan bahwa karena∠BAD = ∠BFD, maka ABDF adalah segiempat siklik. Perhatikan juga bahwa
\(\begin{aligned} 3x°&=\angle FBE+\angle FEB\\ &=\angle AFB\\ &=\angle ADB\\ &=180°-\angle BAD-\angle ABD\\ &=180°-40°-\left(80°+2x°\right)\\ &=60°-2x°\\ 5x°&=60°\\ x&=12 \end{aligned}\)
\(\begin{aligned} \angle ACB+\angle CBE&=\angle BEA\\ \angle ACB+x°&=2x°\\ \angle ACB&=x°\\ &=\color{blue}\boxed{\boxed{\color{black}12°}} \end{aligned}\)
Perhatikan bahwa karena
\(\begin{aligned} 3x°&=\angle FBE+\angle FEB\\ &=\angle AFB\\ &=\angle ADB\\ &=180°-\angle BAD-\angle ABD\\ &=180°-40°-\left(80°+2x°\right)\\ &=60°-2x°\\ 5x°&=60°\\ x&=12 \end{aligned}\)
\(\begin{aligned} \angle ACB+\angle CBE&=\angle BEA\\ \angle ACB+x°&=2x°\\ \angle ACB&=x°\\ &=\color{blue}\boxed{\boxed{\color{black}12°}} \end{aligned}\)
Jadi, ∠ACB = 12°.
No.
Misalkan ABC adalah segitiga denganALTERNATIF PENYELESAIAN
\(\begin{aligned}
\cos\angle BAD&=\cos\angle ABD\\
&=\cos\angle ABC\\
&=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\\[4pt]
&=\dfrac{9^2+20^2-16^2}{2\cdot 9\cdot 20}\\[4pt]
&=\dfrac58
\end{aligned}\)
$AD=BD=\dfrac{36}5$
\(\begin{aligned} \cos\angle BAC&=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\\[4pt] &=-\dfrac{14}{64}\\[4pt] &=\dfrac{50}{64}-1\\[4pt] &=2\cos^2\angle BAD-1\\ &=\cos2\angle BAD\\ \angle BAC&=2\angle BAD \end{aligned}\)
maka AD adalah garis bagi ∠BAC. Karena AE dan AD merupakan garis bagi,
∠EAD = 90°
FE = FD = FA
Karena AE garis bagi, maka
\(\begin{aligned} \dfrac{BE}{EC}&=\dfrac{AB}{AC}\\[4pt] \dfrac{BE}{BE+20}&=\dfrac9{16}\\[4pt] BE&=\dfrac{180}7 \end{aligned}\)
\(\begin{aligned} FA&=\dfrac{EB+BD}2\\[4pt] &=\dfrac{\dfrac{180}7+\dfrac{36}5}2\\[4pt] &=\dfrac{576}{35} \end{aligned}\)
p + q = 576 + 35 =611
$AD=BD=\dfrac{36}5$
\(\begin{aligned} \cos\angle BAC&=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\\[4pt] &=-\dfrac{14}{64}\\[4pt] &=\dfrac{50}{64}-1\\[4pt] &=2\cos^2\angle BAD-1\\ &=\cos2\angle BAD\\ \angle BAC&=2\angle BAD \end{aligned}\)
maka AD adalah garis bagi ∠BAC. Karena AE dan AD merupakan garis bagi,
∠EAD = 90°
FE = FD = FA
Karena AE garis bagi, maka
\(\begin{aligned} \dfrac{BE}{EC}&=\dfrac{AB}{AC}\\[4pt] \dfrac{BE}{BE+20}&=\dfrac9{16}\\[4pt] BE&=\dfrac{180}7 \end{aligned}\)
\(\begin{aligned} FA&=\dfrac{EB+BD}2\\[4pt] &=\dfrac{\dfrac{180}7+\dfrac{36}5}2\\[4pt] &=\dfrac{576}{35} \end{aligned}\)
p + q = 576 + 35 =
Jadi, p + q = 611 .
No.
Segitiga ABC dengan panjangALTERNATIF PENYELESAIAN
α + θ + β = 90°
∠BED = ∠ABE = α + θ, ∠BDE = ∠CBD = θ + β. Dari segitiga BDE,
\(\begin{aligned} \angle DBE +\angle BED +\angle BDE &=180°\\ \theta +\alpha+\theta+\theta+\beta &=180°\\ 2\theta +\alpha+\theta +\beta &=180°\\ 2\theta +90°&=180°\\ 2\theta&=90°\\ \theta&=\color{blue}\boxed{\boxed{\color{black}45°}} \end{aligned}\)
\(\begin{aligned} \angle DBE +\angle BED +\angle BDE &=180°\\ \theta +\alpha+\theta+\theta+\beta &=180°\\ 2\theta +\alpha+\theta +\beta &=180°\\ 2\theta +90°&=180°\\ 2\theta&=90°\\ \theta&=\color{blue}\boxed{\boxed{\color{black}45°}} \end{aligned}\)
Jadi, besar ∠DBE adalah 45°.
No.
Pada segitiga ABC denganALTERNATIF PENYELESAIAN
Dengan menggunakan teorema Ceva,
\(\begin{aligned} \dfrac{CQ}{QA}\cdot\dfrac{AR}{RB}\cdot\dfrac{BP}{PC}&=1\\[4pt] \dfrac{CQ}{QA}\cdot\dfrac64\cdot\dfrac42&=1\\[4pt] \dfrac{CQ}{QA}&=\dfrac13 \end{aligned}\)
Dengan menggunakan teorema Menelaus,
\(\begin{aligned} \dfrac{BS}{SC}\cdot\dfrac{CQ}{QA}\cdot\dfrac{AR}{RB}&=1\\[4pt] \dfrac{SC+6}{SC}\cdot\dfrac13\cdot\dfrac64&=1\\[4pt] \left(1+\dfrac6{SC}\right)\dfrac12&=1\\[4pt] 1+\dfrac6{SC}&=2\\[4pt] SC&=6 \end{aligned}\)
PS = PC + CS = 2 + 6 =8
\(\begin{aligned} \dfrac{CQ}{QA}\cdot\dfrac{AR}{RB}\cdot\dfrac{BP}{PC}&=1\\[4pt] \dfrac{CQ}{QA}\cdot\dfrac64\cdot\dfrac42&=1\\[4pt] \dfrac{CQ}{QA}&=\dfrac13 \end{aligned}\)
Dengan menggunakan teorema Menelaus,
\(\begin{aligned} \dfrac{BS}{SC}\cdot\dfrac{CQ}{QA}\cdot\dfrac{AR}{RB}&=1\\[4pt] \dfrac{SC+6}{SC}\cdot\dfrac13\cdot\dfrac64&=1\\[4pt] \left(1+\dfrac6{SC}\right)\dfrac12&=1\\[4pt] 1+\dfrac6{SC}&=2\\[4pt] SC&=6 \end{aligned}\)
PS = PC + CS = 2 + 6 =
Jadi, PS = 8.
No.
Diberikan segitiga ACE siku-siku di C. Titik B, D, dan F berturut-turut terletak pada segmen AC, CE, dan AE sedemikian sehingga BCDF adalah persegi. Jika diketahui- $\dfrac{25\left(\sqrt{10}-1\right)}2$
- $\dfrac{25\sqrt5}2$
- $\dfrac{25\left(3\sqrt2-2\right)}2$
- 29
- $\dfrac{175}2$
ALTERNATIF PENYELESAIAN
Misal AB = x, dan DE = y.
\(\begin{aligned} \dfrac{AB}{FD}&=\dfrac{BF}{DE}\\[4pt] \dfrac{x}5&=\dfrac5y\\[4pt] xy&=25 \end{aligned}\)
\(\begin{aligned} AC^2+CE^2&=AE^2\\ (x+5)^2+(y+5)^2&=15^2\\ x^2+10x+25+y^2+10y+25&=225\\ x^2+y^2+10x+10y&=175\\ (x+y)^2-2xy+10(x+y)&=175\\ (x+y)^2-2(25)+10(x+y)&=175\\ (x+y)^2-50+10(x+y)&=175\\ (x+y)^2+10(x+y)&=225\\ (x+y)^2+10(x+y)+25&=250\\ \left(x+y+5\right)^2&=250\\ x+y+5&=\sqrt{250}\\ x+y+5&=5\sqrt{10}\\ x+y&=5\sqrt{10}-5 \end{aligned}\)
\(\begin{aligned} \left[ABF\right]+[DEF]&=\dfrac12\cdot 5\cdot x+\dfrac12\cdot 5\cdot y\\ &=\dfrac52\left(x+y\right)\\ &=\dfrac52\left(5\sqrt{10}-5\right)\\ &=\color{blue}\boxed{\boxed{\color{black}\dfrac{25\left(\sqrt{10}-1\right)}2}} \end{aligned}\)
\(\begin{aligned} \dfrac{AB}{FD}&=\dfrac{BF}{DE}\\[4pt] \dfrac{x}5&=\dfrac5y\\[4pt] xy&=25 \end{aligned}\)
\(\begin{aligned} AC^2+CE^2&=AE^2\\ (x+5)^2+(y+5)^2&=15^2\\ x^2+10x+25+y^2+10y+25&=225\\ x^2+y^2+10x+10y&=175\\ (x+y)^2-2xy+10(x+y)&=175\\ (x+y)^2-2(25)+10(x+y)&=175\\ (x+y)^2-50+10(x+y)&=175\\ (x+y)^2+10(x+y)&=225\\ (x+y)^2+10(x+y)+25&=250\\ \left(x+y+5\right)^2&=250\\ x+y+5&=\sqrt{250}\\ x+y+5&=5\sqrt{10}\\ x+y&=5\sqrt{10}-5 \end{aligned}\)
\(\begin{aligned} \left[ABF\right]+[DEF]&=\dfrac12\cdot 5\cdot x+\dfrac12\cdot 5\cdot y\\ &=\dfrac52\left(x+y\right)\\ &=\dfrac52\left(5\sqrt{10}-5\right)\\ &=\color{blue}\boxed{\boxed{\color{black}\dfrac{25\left(\sqrt{10}-1\right)}2}} \end{aligned}\)
Jadi, $\left[ABF\right]+[DEF]=\dfrac{25\left(\sqrt{10}-1\right)}2$.
JAWAB: A
JAWAB: A
No.
Diberikan segitiga ABC denganALTERNATIF PENYELESAIAN
untuk segitiga ABC,
$s=\dfrac{7+8+9}2=12$
\(\begin{aligned} \left[ABC\right]&=\sqrt{s(s-a)(s-b)(s-c)}\\ &=\sqrt{12(12-7)(12-8)(12-9)}\\ &=\sqrt{12(5)(4)(3)}\\ &=12\sqrt5 \end{aligned}\)
$s=\dfrac{7+8+9}2=12$
\(\begin{aligned} \left[ABC\right]&=\sqrt{s(s-a)(s-b)(s-c)}\\ &=\sqrt{12(12-7)(12-8)(12-9)}\\ &=\sqrt{12(5)(4)(3)}\\ &=12\sqrt5 \end{aligned}\)
Karena $\dfrac{DC}{BC}=\dfrac39=\dfrac13$, maka
\(\begin{aligned} \left[ADC\right]&=\dfrac13[ABC]\\[4pt] k&=\dfrac13\left(12\sqrt5\right)\\[4pt] &=4\sqrt5\\ k^2&=4^2(5)\\ &=\color{blue}\boxed{\boxed{\color{black}80}} \end{aligned}\)
\(\begin{aligned} \left[ADC\right]&=\dfrac13[ABC]\\[4pt] k&=\dfrac13\left(12\sqrt5\right)\\[4pt] &=4\sqrt5\\ k^2&=4^2(5)\\ &=\color{blue}\boxed{\boxed{\color{black}80}} \end{aligned}\)
Jadi, k2 = 80 .
No.
Diberikan segitiga ABC dengan garis bagi sudut A memotong sisi BC di titik D. Jika panjang AB = AD = 15 dan BD = 10, maka CD adalah ...ALTERNATIF PENYELESAIAN
Misal AB = c = 15 , AD = d = 15 , BD = m = 10, dan CD = n .
$k=\dfrac{c}m=\dfrac{15}{10}=\dfrac32$
\(\begin{aligned} d^2&=mn\left(k^2-1\right)\\ 15^2&=10\cdot n\left(\left(\dfrac32\right)^2-1\right)\\[4pt] 45&=2n\left(\dfrac94-1\right)\\[4pt] 45&=\dfrac52n\\[4pt] n&=18 \end{aligned}\)
$k=\dfrac{c}m=\dfrac{15}{10}=\dfrac32$
\(\begin{aligned} d^2&=mn\left(k^2-1\right)\\ 15^2&=10\cdot n\left(\left(\dfrac32\right)^2-1\right)\\[4pt] 45&=2n\left(\dfrac94-1\right)\\[4pt] 45&=\dfrac52n\\[4pt] n&=18 \end{aligned}\)
Jadi, CD = 18.
No.
Diberikan segitiga siku-siku △ABC denganALTERNATIF PENYELESAIAN
Misal CB = 1
CA = 2
$AB=\sqrt5$
\(\begin{aligned} BC^2&=CE\cdot AC\\ 1^2&=CE\cdot2\\ CE&=\dfrac12 \end{aligned}\)
Karena BD diameter, makaCF = CA = 2
$EF=2-\dfrac12=\dfrac32$
$\dfrac{EF}{EC}=\dfrac{\frac32}{\frac12}=3$
$AB=\sqrt5$
\(\begin{aligned} BC^2&=CE\cdot AC\\ 1^2&=CE\cdot2\\ CE&=\dfrac12 \end{aligned}\)
Karena BD diameter, maka
$EF=2-\dfrac12=\dfrac32$
$\dfrac{EF}{EC}=\dfrac{\frac32}{\frac12}=3$
Jadi, $\frac{EF}{EC}=3$.
Post a Comment