HOTS Zone : Aljabar [5]

Table of Contents
Berikut ini adalah kumpulan soal mengenai materi. Jika ingin bertanya soal, silahkan gabung ke grup Matematika Idhamdaz.

Tipe:


No.

Berapa banyak n dari 1 hingga 2021 yang mengakibatkan n2 + 3 dan n + 4 tidak relatif prima?
ALTERNATIF PENYELESAIAN
Misal FPB dari n2 + 3 dan n + 4 adalah k ≠ 1.
Misal n + 4 = ka, dan n2 + 3 = kb, dengan a dan b bilangan asli.

n = ka − 4

\(\begin{aligned} n^2+3&=kb\\ (ka-4)^2+3&=kb\\ k^2a^2-8ka+16+3&=kb\\ k^2a^2-8ka+19&=kb \end{aligned}\)
kita lihat bahwa k | 19, sehingga didapat k = 19.

\(\begin{array}{rcccl} 1&\lt&n&\lt&2021\\ 1&\lt&19a-4&\lt&2021\\ 5&\lt&19a&\lt&2025\\ \dfrac5{19}&\lt&a&\lt&\dfrac{2025}{19}\\[3.8pt] 1&\leq&a&\leq&106 \end{array}\)
ada 106 nilai a yang memenuhi, sehingga ada 106 juga nilai n yang memenuhi.
Jadi, ada 106 nilai n dari 1 hingga 2021 yang mengakibatkan n2 + 3 dan n + 4 tidak relatif prima.

No.

Diberikan bilangan real positif x, y, z yang memenuhi sistem persamaan berikut
xyz = 1
$x+\dfrac1z=5$
$y+\dfrac1x=29$
$z+\dfrac1y=\dfrac{m}n$
Dengan FPB(m, n) = 1. Nilai dari m + n adalah ....
ALTERNATIF PENYELESAIAN
Misal $p=z+\dfrac1y=\dfrac{m}n$

\(\begin{aligned} \left(x+\dfrac1z\right)\left(y+\dfrac1x\right)\left(z+\dfrac1y\right)&=x+\dfrac1z+y+\dfrac1x+z+\dfrac1y+xyz+\dfrac1{xyz}\\[4pt] \left(5\right)\left(29\right)\left(p\right)&=5+29+p+1+\dfrac11\\ 145p&=p+36\\ 144p&=36\\ p&=\dfrac{36}{144}\\[4pt] \dfrac{m}n&=\dfrac14 \end{aligned}\)
m = 1
n = 4

m + n = 1 + 4 = 5
Jadi, m + n = 5

No.

Diketahui a, b ∈ ℝ yang memenuhi $$a+\dfrac1{a+2015}=b-4030+\dfrac1{b-2015}$$ dan |ab| > 5000. Tentukan nilai dari $$\dfrac{ab}{2015}-a+b.$$ (Notasi ℝ menyatakan himpunan semua bilangan real)
ALTERNATIF PENYELESAIAN
\(\begin{aligned} a+\dfrac1{a+2015}&=b-4030+\dfrac1{b-2015}\\[4pt] a+2015+\dfrac1{a+2015}&=b-2015+\dfrac1{b-2015} \end{aligned}\)
Misal x = a + 2015, dan y = b − 2015. Jika x = y, maka |ab| = 4030, sehingga xy.
\(\begin{aligned} x+\dfrac1x&=y+\dfrac1y\\[4pt] x-y&=\dfrac1y-\dfrac1x\\[4pt] x-y&=\dfrac{x-y}{xy}\\[4pt] xy&=1\\ (a+2015)(b-2015)&=1\\ ab-2015a+2015b-4060225&=1\\ ab-2015a+2015b&=4060226\\ \dfrac{ab}{2015}-a+b&=\color{blue}\boxed{\boxed{\color{black}\dfrac{4060226}{2015}}} \end{aligned}\)
Jadi, $\dfrac{ab}{2015}-a+b=\dfrac{4060226}{2015}$

No.

Hitunglah $$\dfrac{\left(10^4+2^6\right)\left(18^4+2^6\right)\left(26^4+2^6\right)\left(34^4+2^6\right)\left(42^4+2^6\right)}{\left(6^4+2^6\right)\left(14^4+2^6\right)\left(22^4+2^6\right)\left(30^4+2^6\right)\left(38^4+2^6\right)}$$
ALTERNATIF PENYELESAIAN
\(\begin{aligned} x^4+2^6&=x^4+4\cdot2^4\\ &=\left(x^2+2\cdot2^2-2\cdot2\cdot x\right)\left(x^2+2\cdot2^2+2\cdot2\cdot x\right)\\ &=\left(x(x-4)+8\right)\left(x(x+4)+8\right)\\ \end{aligned}\)

\(\begin{aligned} \dfrac{\left(10^4+2^6\right)\left(18^4+2^6\right)\left(26^4+2^6\right)\left(34^4+2^6\right)\left(42^4+2^6\right)}{\left(6^4+2^6\right)\left(14^4+2^6\right)\left(22^4+2^6\right)\left(30^4+2^6\right)\left(38^4+2^6\right)}&=\dfrac{\left(10(10-4)+8\right)\left(10(10+4)+8\right)\left(18(18-4)+8\right)\left(18(18+4)+8\right)\cdots\left(42(42-4)+8\right)\left(42(42+4)+8\right)}{\left(6(6-4)+8\right)\left(6(6+4)+8\right)\left(14(14-4)+8\right)\left(14(14+4)+8\right)\cdots\left(38(38-4)+8\right)\left(38(38+4)+8\right)}\\[4pt] &=\dfrac{\left(10(6)+8\right)\left(10(14)+8\right)\left(18(14)+8\right)\left(18(22)+8\right)\cdots\left(42(38)+8\right)\left(42(46)+8\right)}{\left(6(2)+8\right)\left(6(10)+8\right)\left(14(10)+8\right)\left(14(18)+8\right)\cdots\left(38(34)+8\right)\left(38(42)+8\right)}\\[4pt] &=\dfrac{1940}{20}\\ &=\color{blue}\boxed{\boxed{\color{black}97}} \end{aligned}\)
Jadi, $\dfrac{\left(10^4+2^6\right)\left(18^4+2^6\right)\left(26^4+2^6\right)\left(34^4+2^6\right)\left(42^4+2^6\right)}{\left(6^4+2^6\right)\left(14^4+2^6\right)\left(22^4+2^6\right)\left(30^4+2^6\right)\left(38^4+2^6\right)}=97$.

No.

Tentukan banyak bilangan asli n sedemikian sehingga \[\frac{n^{2024}}{n+1}+\frac5{n^2+n}\] bilangan asli
ALTERNATIF PENYELESAIAN
\(\dfrac{n^{2024}}{n+1}+\dfrac5{n^2+n}=\dfrac{n^{2025}+5}{n^2+n}\)

\(\begin{aligned} n^{2025}+5&=n^{2025}+n^{2024}-n^{2024}+5\\ &=-n^{2024}+5&\pmod{n^2+n}\\ &=-n^{2024}-n^{2023}+n^{2023}+5&\pmod{n^2+n}\\ &=n^{2023}+5&\pmod{n^2+n}\\ &=n+5&\pmod{n^2+n}\\ \end{aligned}\)

agar \(\dfrac{n+5}{n^2+n}\) bilangan asli, maka
\(\begin{aligned} n^2+n&\leq n+5\\ n^2&\leq5 \end{aligned}\)
n = 1 atau n = 2
  • n = 1

    \(\begin{aligned} \dfrac{n+5}{n^2+n}&=\dfrac{1+5}{1^2+1}\\[3.8pt] &=3 \end{aligned}\)
  • n = 2

    \(\begin{aligned} \dfrac{n+5}{n^2+n}&=\dfrac{2+5}{2^2+2}\\[3.8pt] &=\dfrac76 \end{aligned}\)
    Bukan bilangan bulat
Jadi, banyak bilangan asli n sedemikian sehingga \[\frac{n^{2024}}{n+1}+\frac5{n^2+n}\] bilangan asli ada 1 bilangan.

No.

Pertidaksamaan berikut berlaku untuk semua bilangan bulat positif n. $$\sqrt{n+1}-\sqrt{n}\lt\dfrac1{\sqrt{4n+1}}\lt\sqrt{n}-\sqrt{n-1}$$ Berapa nilai bilangan bulat terbesar yang kurang dari $\displaystyle\sum_{n=1}^{24}\dfrac1{\sqrt{4n+1}}$?
ALTERNATIF PENYELESAIAN
\begin{array}{rcccl} \displaystyle\sum_{n=1}^{24}\left(\sqrt{n+1}-\sqrt{n}\right)&\lt&\displaystyle\sum_{n=1}^{24}\dfrac1{\sqrt{4n+1}}&\lt&\displaystyle\sum_{n=1}^{24}\left(\sqrt{n}-\sqrt{n-1}\right)\\[4pt] \sqrt2-\sqrt1+\sqrt3-\sqrt2+\cdots+\sqrt{25}-\sqrt{24}&\lt&\displaystyle\sum_{n=1}^{24}\dfrac1{\sqrt{4n+1}}&\lt&\sqrt1-\sqrt0+\sqrt2-\sqrt1+\cdots+\sqrt{24}-\sqrt{23}\\[4pt] -\sqrt1+\sqrt{25}&\lt&\displaystyle\sum_{n=1}^{24}\dfrac1{\sqrt{4n+1}}&\lt&-\sqrt0+\sqrt{24}\\[4pt] 4&\lt&\displaystyle\sum_{n=1}^{24}\dfrac1{\sqrt{4n+1}}&\lt&\sqrt{24}\\[4pt] 4&\lt&\displaystyle\sum_{n=1}^{24}\dfrac1{\sqrt{4n+1}}&\lt&4,... \end{array}
Jadi, nilai bilangan bulat terbesar yang kurang dari $\displaystyle\sum_{n=1}^{24}\dfrac1{\sqrt{4n+1}}$ adalah 4.

No.

Diberikan bilangan real x, y yang memenuhi persamaan x + y = 4 dan xy = −2. Nilai dari $$x+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+y$$ adalah ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned} x+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+y&=x+y+\dfrac{x^4+y^4}{x^2y^2}\\[4pt] &=x+y+\dfrac{(x+y)^4-4xy(x+y)^2+2(xy)^2}{(xy)^2}\\[4pt] &=4+\dfrac{4^4-4(-2)(4)^2+2(-2)^2}{(-2)^2}\\[4pt] &=4+\dfrac{256+128+8}{4}\\[4pt] &=4+\dfrac{392}4\\[4pt] &=4+98\\ &=\color{blue}\boxed{\boxed{\color{black}102}} \end{aligned}\)
Jadi, nilai dari $$x+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+y$$ adalah 102.

No.

Diketahui a dan b dua bilangan real nonnegatif yang memenuhi a + 2b = 15. Nilai terbesar yang mungkin dari 3a + 5b adalah ....
  1. 49
  2. 45
  1. 51
  2. 41
ALTERNATIF PENYELESAIAN
a = 15 − 2b

\(\begin{aligned} 3a+5b&=3(15-2b)+5b\\ &=45-6b+5b\\ &=45-b \end{aligned}\)
Nilai 45 − b akan maksimum ketika nilai b minimum, yaitu b = 0.
45 − 0 = 45
Jadi, nilai terbesar yang mungkin dari 3a + 5b adalah 45.
JAWAB: B

No.

Misalkan x, y bilangan real positif dengan x > y. Jika diketahui bahwa $x^2+y^2=\left(\dfrac{545}{272}\right)xy$, maka $\dfrac{x+y}{x-y}$ adalah ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned} \left(\dfrac{x+y}{x-y}\right)^2&=\dfrac{x^2+y^2+2xy}{x^2+y^2-2xy}\\[4pt] &=\dfrac{\left(\dfrac{545}{272}\right)xy+2xy}{\left(\dfrac{545}{272}\right)xy-2xy}\\[4pt] &=\dfrac{\left(\dfrac{1089}{272}\right)xy}{\left(\dfrac1{272}\right)xy}\\[4pt] &=1089\\ \dfrac{x+y}{x-y}&=\sqrt{1089}\\ &=\color{blue}\boxed{\boxed{\color{black}33}} \end{aligned}\)
Jadi, $\dfrac{x+y}{x-y}=33$.

No.

Jika \(x+y+3\sqrt{x+y}=18\) dan \(x-y-2\sqrt{x-y}=15\), maka xy = ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned} x+y+3\sqrt{x+y}&=18\\ \left(\sqrt{x+y}\right)^2+3\sqrt{x+y}-18&=0\\ \left(\sqrt{x+y}+6\right)\left(\sqrt{x+y}-3\right)&=0\\ \sqrt{x+y}&=3\\ x+y&=9 \end{aligned}\)

\(\begin{aligned} x-y-2\sqrt{x-y}&=15\\ \left(\sqrt{x-y}\right)^2-2\sqrt{x-y}-15&=0\\ \left(\sqrt{x-y}+3\right)\left(\sqrt{x-y}-5\right)&=0\\ \sqrt{x-y}&=5\\ x-y&=25 \end{aligned}\)

\(\begin{aligned} 4xy&=\left(x+y\right)^2-\left(x-y\right)^2\\ &=9^2-25^2\\ &=81-625\\ &=-544\\ xy&=\boxed{\boxed{-138}} \end{aligned}\)
Jadi, xy = −138.

Post a Comment