HOTS Zone : Persamaan Trigonometri
Berikut ini adalah kumpulan soal mengenai Persamaan Trigonometri. Jika ingin bertanya soal, silahkan gabung ke grup Matematika Idhamdaz.
sin4 t − cos4 t = 1 dengan −π ≤ t ≤ π adalah ....
maka $\dfrac{a}{m^4}=$ ....
(24 cos x)2 = (24 sin x)3, dengan ${0 \lt x \lt\dfrac{\pi}2}$. Nilai dari cot2 x = ....
Tipe:
No.
Banyak bilangan real t yang memenuhi persamaan- 0
- 4
- 8
- 2
- 1
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\sin^4t-\cos^4t&=1\\
\left(\sin^2t+\cos^2t\right)\left(\sin^2t-\cos^2t\right)&=1\\
\sin^2t-\cos^2t&=1\\
\cos^2t-\sin^2t&=-1\\
\cos2t&=-1\\
\cos2t&=\cos\pi
\end{aligned}\)
- 2t = π + 2kπ
$t=\dfrac{\pi}2+k\pi$
k = −1 ⟶ $t=-\dfrac{\pi}2$ k = 0 ⟶ $t=\dfrac{\pi}2$ - 2t = −π + 2kπ
$t=-\dfrac{\pi}2+k\pi$
k = 0 ⟶ $t=-\dfrac{\pi}2$ k = 1 ⟶ $t=\dfrac{\pi}2$
Jadi,
JAWAB:
JAWAB:
No.
$\sqrt{a}\cos x-\sqrt{a}\sin x=\dfrac{m^2\cos2x}{\cos x+\sin x}$maka $\dfrac{a}{m^4}=$ ....
ALTERNATIF PENYELESAIAN
\(\begin{aligned}
\sqrt{a}\cos x-\sqrt{a}\sin x&=\dfrac{m^2\cos2x}{\cos x+\sin x}\\[8pt]
\sqrt{a}(\cos x-\sin x)&=\dfrac{m^2\cos2x}{\cos x+\sin x}\\[8pt]
\sqrt{a}(\cos x-\sin x)(\cos x+\sin x)&=m^2\cos2x\\
\sqrt{a}\left(\cos^2 x-\sin^2 x\right)&=m^2\cos2x\\
\sqrt{a}\cos2x&=m^2\cos2x\\
\sqrt{a}&=m^2\\
a&=m^4\\
\dfrac{a}{m^4}&=\boxed{\boxed{1}}
\end{aligned}\)
Jadi, $\dfrac{a}{m^4}=1$.
No.
DiberikanALTERNATIF PENYELESAIAN
\(\eqalign{
(24\cos x)^2&= (24 \sin x)^3\\
24^2\cos^2x&=24^3\sin^3x\\
\cos^2x&=24\sin^3x\\
1-\sin^2x&=24\sin^3x\\
24\sin^3x+\sin^2x-1&=0\\
(3\sin x-1)\left(8\sin^2x+3\sin x+1\right)&=0\\
\sin x&=\dfrac13
}\)
\(\begin{aligned} \cot^2x&=\dfrac{\cos^2x}{\sin^2x}\\[4pt] &=\dfrac{1-\sin^2x}{\sin^2x}\\[4pt] &=\dfrac1{\sin^2x}-1\\[4pt] &=\left(\dfrac1{\sin x}\right)^2-1\\[4pt] &=\left(3\right)^2-1\\ &=\color{blue}\boxed{\boxed{\color{black}8}} \end{aligned}\)
\(\begin{aligned} \cot^2x&=\dfrac{\cos^2x}{\sin^2x}\\[4pt] &=\dfrac{1-\sin^2x}{\sin^2x}\\[4pt] &=\dfrac1{\sin^2x}-1\\[4pt] &=\left(\dfrac1{\sin x}\right)^2-1\\[4pt] &=\left(3\right)^2-1\\ &=\color{blue}\boxed{\boxed{\color{black}8}} \end{aligned}\)
Jadi, cot2 x = 8.
Post a Comment